Operators (D to H)
This file is automatically generated from java files. Do Not Edit It.
Definition​
Operators in the GAML language are used to compose complex expressions. An operator performs a function on one, two, or n operands (which are other expressions and thus may be themselves composed of operators) and returns the result of this function.
Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2, operand3)
, see below), with the exception of arithmetic (e.g. +
, /
), logical (and
, or
), comparison (e.g. >
, <
), access (.
, [..]
) and pair (::
) operators, which require an infixed notation (i.e. operand1 operator_symbol operand1
).
The ternary functional if-else operator, ? :
, uses a special infixed syntax composed with two symbols (e.g. operand1 ? operand2 : operand3
). Two unary operators (-
and !
) use a traditional prefixed syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10
, ! (operand1 or operand2)
).
Finally, special constructor operators ({...}
for constructing points, [...]
for constructing lists and maps) will require their operands to be placed between their two symbols (e.g. {1,2,3}
, [operand1, operand2, ..., operandn]
or [key1::value1, key2::value2... keyn::valuen]
).
With the exception of these special cases above, the following rules apply to the syntax of operators:
- if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1)
) - if they have two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2)
) or the infixed syntax (e.g.operand1 operator_name operand2
) can be used. - if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand)
) or a special infixed syntax with the first operand on the left-hand side of the operator name (e.g.operand1 operator_name(operand2, ..., operand)
) can be used.
All of these alternative syntaxes are completely equivalent.
Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their operands. For instance, the shuffle
operator, which randomizes the positions of elements in a list, does not modify its list operand but returns a new shuffled list.
Priority between operators​
The priority of operators determines, in the case of complex expressions composed of several operators, which one(s) will be evaluated first.
GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison operators, with some twists. Namely:
- the constructor operators, like
::
, used to compose pairs of operands, have the lowest priority of all operators (e.g.a > b :: b > c
will return a pair of boolean values, which means that the two comparisons are evaluated before the operator applies. Similarly,[a > 10, b > 5]
will return a list of boolean values. - it is followed by the
?:
operator, the functional if-else (e.g.a > b ? a + 10 : a - 10
will return the result of the if-else). - next are the logical operators,
and
andor
(e.g.a > b or b > c
will return the value of the test) - next are the comparison operators (i.e.
>
,<
,<=
,>=
,=
,!=
) - next the arithmetic operators in their logical order (multiplicative operators have a higher priority than additive operators)
- next the unary operators
-
and!
- next the access operators
.
and[]
(e.g.{1,2,3}.x > 20 + {4,5,6}.y
will return the result of the comparison between the x and y ordinates of the two points) - and finally the functional operators, which have the highest priority of all.
Using actions as operators​
Actions defined in species can be used as operators, provided they are called on the correct agent. The syntax is that of normal functional operators, but the agent that will perform the action must be added as the first operand.
For instance, if the following species is defined:
species spec1 {
int min(int x, int y) {
return x > y ? x : y;
}
}
Any agent instance of spec1 can use min
as an operator (if the action conflicts with an existing operator, a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:
global {
init {
create spec1;
spec1 my_agent <- spec1[0];
int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
}
}
If the action doesn't have any operands, the syntax to use is my_agent the_action()
. Finally, if it does not return a value, it might still be used but is considering as returning a value of type unknown
(e.g. unknown result <- my_agent the_action(op1, op2);
).
Note that due to the fact that actions are written by modelers, the general functional contract is not respected in that case: actions might perfectly have side effects on their operands (including the agent).
Table of Contents​
Operators by categories​
3D​
box, cone3D, cube, cylinder, dem, hexagon, pyramid, set_z, sphere, teapot,
Arithmetic operators​
-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite, is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,
BDI​
add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op, get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op, get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op, get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op, get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op, get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality, get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op, get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth, get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op, get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op, has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op, has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op, has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not, or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity, set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth, with_values,
Casting operators​
as, as_int, as_matrix, font, is, is_skill, list_with, matrix_with, species, to_gaml, topology,
Color-related operators​
-, /, *, +, blend, brewer_colors, brewer_palettes, grayscale, hsb, mean, median, rgb, rnd_color, sum,
Comparison operators​
Containers-related operators​
-, ::, +, accumulate, all_match, among, at, collect, contains, contains_all, contains_any, contains_key, count, distinct, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave, internal_at, internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of, mul, none_matches, one_matches, one_of, product_of, range, reverse, shuffle, sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,
Date-related operators​
-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours, minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days, plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until, years_between,
Dates​
Displays​
Driving operators​
edge​
EDP-related operators​
Files-related operators​
crs, csv_file, dxf_file, evaluate_sub_model, file_exists, folder, folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, grid_file, image_file, is_csv, is_dxf, is_gaml, is_geojson, is_gif, is_gml, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_R, is_saved_simulation, is_shape, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file, property_file, R_file, read, saved_simulation_file, shape_file, step_sub_model, svg_file, text_file, threeds_file, writable, xml_file,
FIPA-related operators​
GamaMetaType​
Graphs-related operators​
add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index, as_distance_graph, as_edge_graph, as_intersection_graph, as_path, beta_index, betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index, contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges, gamma_index, generate_barabasi_albert, generate_complete_graph, generate_watts_strogatz, grid_cells_to_graph, in_degree_of, in_edges_of, layout_circle, layout_force, layout_grid, load_graph_from_file, load_shortest_paths, main_connected_component, max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of, out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of, spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of, with_optimizer_type, with_weights,
Grid-related operators​
as_4_grid, as_grid, as_hexagonal_grid, grid_at, path_between,
Iterator operators​
accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by, last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of, variance_of, where, with_max_of, with_min_of,
List-related operators​
all_indexes_of, copy_between, index_of, last_index_of,
Logical operators​
:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,
Map comparaison operators​
fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,
Map-related operators​
as_map, create_map, index_of, last_index_of,
Material​
Matrix-related operators​
-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,
multicriteria operators​
electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,
Path-related operators​
agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between, path_between, path_to, paths_between, use_cache,
Points-related operators​
-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with, farthest_point_to, grid_at, norm, points_along, points_at, points_on,
Random operators​
binomial, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, open_simplex_generator, poisson, rnd, rnd_choice, sample, shuffle, simplex_generator, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,
ReverseOperators​
restore_simulation, restore_simulation_from_file, save_agent, save_simulation, serialize, serialize_agent,
Shape​
arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope, geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square, squircle, teapot, triangle,
Spatial operators​
-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside, agents_overlapping, angle_between, any_location_in, arc, around, as_4_grid, as_grid, as_hexagonal_grid, at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone, cone3D, convex_hull, covers, cross, crosses, crs, CRS_transform, cube, curve, cylinder, dem, direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope, farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside, inter, intersects, inverse_rotation, line, link, masked_by, moran, neighbors_at, neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlaps, path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid, rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance, simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot, to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, towards, transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision, without_holes,
Spatial properties operators​
covers, crosses, intersects, partially_overlaps, touches,
Spatial queries operators​
agent_closest_to, agent_farthest_to, agents_at_distance, agents_inside, agents_overlapping, at_distance, closest_to, farthest_to, inside, neighbors_at, neighbors_of, overlapping,
Spatial relations operators​
direction_between, distance_between, distance_to, path_between, path_to, towards,
Spatial statistical operators​
hierarchical_clustering, simple_clustering_by_distance,
Spatial transformations operators​
-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull, CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to, simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi, with_precision, without_holes,
Species-related operators​
index_of, last_index_of, of_generic_species, of_species,
Statistical operators​
auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square, chi_square_complemented, corR, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw, durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented, geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma, incomplete_gamma_complement, kmeans, kurtosis, kurtosis, log_gamma, max, mean, mean_deviation, meanR, median, min, moment, moran, mul, normal_area, normal_density, normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse, rank_interpolated, rms, simple_clustering_by_distance, skew, skewness, split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, variance, variance,
Strings-related operators​
+, <, <=, >, >=, at, char, contains, contains_all, contains_any, copy_between, date, empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, replace, replace_regex, reverse, sample, shuffle, split_with, string, upper_case,
SubModel​
System​
., choose, command, copy, copy_to_clipboard, dead, enter, eval_gaml, every, is_error, is_warning, user_input,
Time-related operators​
Types-related operators​
action, agent, attributes, BDIPlan, bool, container, emotion, file, float, gaml_type, geometry, graph, int, kml, list, map, material, matrix, mental_state, Norm, pair, path, point, predicate, regression, rgb, Sanction, skill, social_link, topology, unknown,
User control operators​
Operators​
date
​
Possible use:​
string
date
string
--->date
date
(string
,string
) --->date
date
(string
,string
,string
) --->date
Result:​
converts a string to a date following a custom pattern. The pattern can use "%Y %M %N %D %E %h %m %s %z" for outputting years, months, name of month, days, name of days, hours, minutes, seconds and the time-zone. A null or empty pattern will parse the date using one of the ISO date & time formats (similar to date('...') in that case). The pattern can also follow the pattern definition found here, which gives much more control over what will be parsed: https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns. Different patterns are available by default as constant: #iso_local, #iso_simple, #iso_offset, #iso_zoned and #custom, which can be changed in the preferences converts a string to a date following a custom pattern and a specific locale (e.g. 'fr', 'en'...). The pattern can use "%Y %M %N %D %E %h %m %s %z" for parsing years, months, name of month, days, name of days, hours, minutes, seconds and the time-zone. A null or empty pattern will parse the date using one of the ISO date & time formats (similar to date('...') in that case). The pattern can also follow the pattern definition found here, which gives much more control over what will be parsed: https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#patterns. Different patterns are available by default as constant: #iso_local, #iso_simple, #iso_offset, #iso_zoned and #custom, which can be changed in the preferences
Examples:​
date den <- date("1999-12-30", 'yyyy-MM-dd');
date d <- date("1999-january-30", 'yyyy-MMMM-dd', 'en');
dbscan
​
Possible use:​
dbscan
(list
,float
,int
) --->list<list>
Result:​
returns the list of clusters (list of instance indices) computed with the dbscan (density-based spatial clustering of applications with noise) algorithm from the first operand data according to the maximum radius of the neighborhood to be considered (eps) and the minimum number of points needed for a cluster (minPts). Usage: dbscan(data,eps,minPoints)
Special cases:​
- if the lengths of two vectors in the right-hand aren't equal, returns 0
Examples:​
list<list> var0 <- dbscan ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],10,2); // var0 equals [[0,1,2,3]]
dead
​
Possible use:​
dead
(agent
) --->bool
Result:​
true if the agent is dead (or null), false otherwise.
Examples:​
bool var0 <- dead(agent_A); // var0 equals true or false
degree_of
​
Possible use:​
graph
degree_of
unknown
--->int
degree_of
(graph
,unknown
) --->int
Result:​
returns the degree (in+out) of a vertex (right-hand operand) in the graph given as left-hand operand.
Examples:​
int var1 <- graphFromMap degree_of (node(3)); // var1 equals 3
See also:​
dem
​
Possible use:​
dem
(file
) --->geometry
file
dem
file
--->geometry
dem
(file
,file
) --->geometry
file
dem
float
--->geometry
dem
(file
,float
) --->geometry
dem
(file
,file
,float
) --->geometry
Result:​
A polygon that is equivalent to the surface of the texture
Examples:​
geometry var0 <- dem(dem,texture); // var0 equals a geometry as a rectangle of weight and height equal to the texture.
geometry var1 <- dem(dem,texture,z_factor); // var1 equals a geometry as a rectangle of width and height equal to the texture.
geometry var2 <- dem(dem,z_factor); // var2 equals a geometry as a rectangle of weight and height equal to the texture.
geometry var3 <- dem(dem); // var3 equals returns a geometry as a rectangle of width and height equal to the texture.
det
​
Same signification as determinant
determinant
​
Possible use:​
determinant
(matrix<unknown>
) --->float
Result:​
The determinant of the given matrix
Examples:​
float var0 <- determinant(matrix([[1,2],[3,4]])); // var0 equals -2
diff
​
Possible use:​
float
diff
float
--->float
diff
(float
,float
) --->float
Result:​
A placeholder function for expressing equations
diff2
​
Possible use:​
float
diff2
float
--->float
diff2
(float
,float
) --->float
Result:​
A placeholder function for expressing equations
directed
​
Possible use:​
directed
(graph
) --->graph
Result:​
the operand graph becomes a directed graph.
Comment:​
WARNING / side effect: this operator modifies the operand and does not create a new graph.
See also:​
direction_between
​
Possible use:​
topology
direction_between
container<unknown,geometry>
--->float
direction_between
(topology
,container<unknown,geometry>
) --->float
Result:​
A direction (in degree) between a list of two geometries (geometries, agents, points) considering a topology.
Examples:​
float var0 <- my_topology direction_between [ag1, ag2]; // var0 equals the direction between ag1 and ag2 considering the topology my_topology
See also:​
towards, direction_to, distance_to, distance_between, path_between, path_to,
direction_to
​
Same signification as towards
disjoint_from
​
Possible use:​
geometry
disjoint_from
geometry
--->bool
disjoint_from
(geometry
,geometry
) --->bool
Result:​
A boolean, equal to true if the left-geometry (or agent/point) is disjoints from the right-geometry (or agent/point).
Special cases:​
- if one of the operand is null, returns true.
- if one operand is a point, returns false if the point is included in the geometry.
Examples:​
bool var0 <- polyline([{10,10},{20,20}]) disjoint_from polyline([{15,15},{25,25}]); // var0 equals false
bool var1 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{15,15},{15,25},{25,25},{25,15}]); // var1 equals false
bool var2 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from {15,15}; // var2 equals false
bool var3 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from {25,25}; // var3 equals true
bool var4 <- polygon([{10,10},{10,20},{20,20},{20,10}]) disjoint_from polygon([{35,35},{35,45},{45,45},{45,35}]); // var4 equals true
See also:​
intersects, crosses, overlaps, partially_overlaps, touches,
distance_between
​
Possible use:​
topology
distance_between
container<unknown,geometry>
--->float
distance_between
(topology
,container<unknown,geometry>
) --->float
Result:​
A distance between a list of geometries (geometries, agents, points) considering a topology.
Examples:​
float var0 <- my_topology distance_between [ag1, ag2, ag3]; // var0 equals the distance between ag1, ag2 and ag3 considering the topology my_topology
See also:​
towards, direction_to, distance_to, direction_between, path_between, path_to,
distance_to
​
Possible use:​
geometry
distance_to
geometry
--->float
distance_to
(geometry
,geometry
) --->float
point
distance_to
point
--->float
distance_to
(point
,point
) --->float
Result:​
A distance between two geometries (geometries, agents or points) considering the topology of the agent applying the operator.
Examples:​
float var0 <- ag1 distance_to ag2; // var0 equals the distance between ag1 and ag2 considering the topology of the agent applying the operator
See also:​
towards, direction_to, distance_between, direction_between, path_between, path_to,
distinct
​
Possible use:​
distinct
(container
) --->list
Result:​
produces a set from the elements of the operand (i.e. a list without duplicated elements)
Special cases:​
- if the operand is a graph, remove_duplicates returns the set of nodes
- if the operand is nil, remove_duplicates returns nil
list var1 <- remove_duplicates([]); // var1 equals []
- if the operand is a map, remove_duplicates returns the set of values without duplicate
list var2 <- remove_duplicates([1::3,2::4,3::3,5::7]); // var2 equals [3,4,7]
- if the operand is a matrix, remove_duplicates returns a list containing all the elments with duplicated.
list var3 <- remove_duplicates([["c11","c12","c13","c13"],["c21","c22","c23","c23"]]); // var3 equals [["c11","c12","c13","c21","c22","c23"]]
Examples:​
list var0 <- remove_duplicates([3,2,5,1,2,3,5,5,5]); // var0 equals [3,2,5,1]
distribution_of
​
Possible use:​
distribution_of
(container
) --->map
container
distribution_of
int
--->map
distribution_of
(container
,int
) --->map
distribution_of
(container
,int
,float
,float
) --->map
Result:​
Discretize a list of values into n bins (computes the bins from a numerical variable into n (default 10) bins. Returns a distribution map with the values (values key), the interval legends (legend key), the distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)
Examples:​
map var0 <- distribution_of([1,1,2,12.5],10); // var0 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var1 <- distribution_of([1,1,2,12.5]); // var1 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var2 <- distribution_of([1,1,2,12.5]); // var2 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
See also:​
distribution2d_of
​
Possible use:​
container
distribution2d_of
container
--->map
distribution2d_of
(container
,container
) --->map
distribution2d_of
(container
,container
,int
,int
) --->map
distribution2d_of
(container
,container
,int
,float
,float
,int
,float
,float
) --->map
Result:​
Discretize two lists of values into n bins (computes the bins from a numerical variable into n (default 10) bins. Returns a distribution map with the values (values key), the interval legends (legend key), the distribution parameters (params keys, for cumulative charts). Parameters can be (list), (list, nbbins) or (list,nbbins,valmin,valmax)
Examples:​
map var0 <- distribution2d_of([1,1,2,12.5]); // var0 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var1 <- distribution2d_of([1,1,2,12.5],10); // var1 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
map var2 <- distribution2d_of([1,1,2,12.5],10); // var2 equals map(['values'::[2,1,0,0,0,0,1,0,0,0],'legend'::['[0.0:2.0]','[2.0:4.0]','[4.0:6.0]','[6.0:8.0]','[8.0:10.0]','[10.0:12.0]','[12.0:14.0]','[14.0:16.0]','[16.0:18.0]','[18.0:20.0]'],'parlist'::[1,0]])
See also:​
div
​
Possible use:​
int
div
float
--->int
div
(int
,float
) --->int
float
div
float
--->int
div
(float
,float
) --->int
int
div
int
--->int
div
(int
,int
) --->int
float
div
int
--->int
div
(float
,int
) --->int
Result:​
Returns the truncation of the division of the left-hand operand by the right-hand operand.
Special cases:​
- if the right-hand operand is equal to zero, raises an exception.
- if the right-hand operand is equal to zero, raises an exception.
- if the right-hand operand is equal to zero, raises an exception.
Examples:​
int var0 <- 40 div 4.1; // var0 equals 9
int var1 <- 40.1 div 4.5; // var1 equals 8
int var2 <- 40 div 3; // var2 equals 13
int var3 <- 40.5 div 3; // var3 equals 13
See also:​
mod,
dnorm
​
Same signification as normal_density
dtw
​
Possible use:​
list
dtw
list
--->float
dtw
(list
,list
) --->float
dtw
(list
,list
,int
) --->float
Result:​
returns the dynamic time warping between the two series of values (step pattern used: symetric1) returns the dynamic time warping between the two series of values (step pattern used: symetric1) with Sakoe-Chiba band (radius: the window width of Sakoe-Chiba band)
Examples:​
float var0 <- dtw([32.0,5.0,1.0,3.0],[1.0,10.0,5.0,1.0]); // var0 equals 38.0
float var1 <- dtw([10.0,5.0,1.0, 3.0],[1.0,10.0,5.0,1.0], 2); // var1 equals 11.0
durbin_watson
​
Possible use:​
durbin_watson
(container
) --->float
Result:​
Durbin-Watson computation
Examples:​
float var0 <- durbin_watson([13,2,1,4,1,2]) with_precision(4); // var0 equals 0.7231
dxf_file
​
Possible use:​
dxf_file
(string
) --->file
string
dxf_file
float
--->file
dxf_file
(string
,float
) --->file
Result:​
Constructs a file of type dxf. Allowed extensions are limited to dxf
Special cases:​
- dxf_file(string): This file constructor allows to read a dxf (.dxf) file
file f <- dxf_file("file.dxf");
- dxf_file(string,float): This file constructor allows to read a dxf (.dxf) file and specify the unit (meter by default)
file f <- dxf_file("file.dxf",#m);
See also:​
edge
​
Possible use:​
edge
(pair
) --->unknown
edge
(unknown
) --->unknown
pair
edge
float
--->unknown
edge
(pair
,float
) --->unknown
unknown
edge
float
--->unknown
edge
(unknown
,float
) --->unknown
unknown
edge
unknown
--->unknown
edge
(unknown
,unknown
) --->unknown
unknown
edge
int
--->unknown
edge
(unknown
,int
) --->unknown
pair
edge
int
--->unknown
edge
(pair
,int
) --->unknown
edge
(unknown
,unknown
,int
) --->unknown
edge
(pair
,unknown
,int
) --->unknown
edge
(unknown
,unknown
,float
) --->unknown
edge
(pair
,unknown
,float
) --->unknown
edge
(unknown
,unknown
,unknown
) --->unknown
edge
(unknown
,unknown
,unknown
,float
) --->unknown
edge
(unknown
,unknown
,unknown
,int
) --->unknown
edge_between
​
Possible use:​
graph
edge_between
pair
--->unknown
edge_between
(graph
,pair
) --->unknown
Result:​
returns the edge linking two nodes
Examples:​
unknown var0 <- graphFromMap edge_between node1::node2; // var0 equals edge1
See also:​
edge_betweenness
​
Possible use:​
edge_betweenness
(graph
) --->map
Result:​
returns a map containing for each edge (key), its betweenness centrality (value): number of shortest paths passing through each edge
Examples:​
graph graphEpidemio <- graph([]);
map var1 <- edge_betweenness(graphEpidemio); // var1 equals the edge betweenness index of the graph
edges
​
Possible use:​
edges
(container
) --->container
eigenvalues
​
Possible use:​
eigenvalues
(matrix<unknown>
) --->list<float>
Result:​
The eigen values (matrix) of the given matrix
Examples:​
list<float> var0 <- eigenvalues(matrix([[5,-3],[6,-4]])); // var0 equals [2.0000000000000004,-0.9999999999999998]
electre_DM
​
Possible use:​
electre_DM
(list<list>
,list<map<string,unknown>>
,float
) --->int
Result:​
The index of the best candidate according to a method based on the ELECTRE methods. The principle of the ELECTRE methods is to compare the possible candidates by pair. These methods analyses the possible outranking relation existing between two candidates. An candidate outranks another if this one is at least as good as the other one. The ELECTRE methods are based on two concepts: the concordance and the discordance. The concordance characterizes the fact that, for an outranking relation to be validated, a sufficient majority of criteria should be in favor of this assertion. The discordance characterizes the fact that, for an outranking relation to be validated, none of the criteria in the minority should oppose too strongly this assertion. These two conditions must be true for validating the outranking assertion. More information about the ELECTRE methods can be found in [http://www.springerlink.com/content/g367r44322876223/ Figueira, J., Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., and Ehrgott, M., (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 133--162 (2005)]. The first operand is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion: A criterion is a map that contains fives elements: a name, a weight, a preference value (p), an indifference value (q) and a veto value (v). The preference value represents the threshold from which the difference between two criterion values allows to prefer one vector of values over another. The indifference value represents the threshold from which the difference between two criterion values is considered significant. The veto value represents the threshold from which the difference between two criterion values disqualifies the candidate that obtained the smaller value; the last operand is the fuzzy cut.
Special cases:​
- returns -1 is the list of candidates is nil or empty
Examples:​
int var0 <- electre_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "weight" :: 2.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: true],["name"::"price", "weight" :: 1.0,"p"::0.5, "q"::0.0, "s"::1.0, "maximize" :: false]],0.7); // var0 equals 0
See also:​
weighted_means_DM, promethee_DM, evidence_theory_DM,
ellipse
​
Possible use:​
float
ellipse
float
--->geometry
ellipse
(float
,float
) --->geometry
Result:​
An ellipse geometry which x-radius is equal to the first operand and y-radius is equal to the second operand
Comment:​
the center of the ellipse is by default the location of the current agent in which has been called this operator.
Special cases:​
- returns a point if both operands are lower or equal to 0, a line if only one is.
Examples:​
geometry var0 <- ellipse(10, 10); // var0 equals a geometry as an ellipse of width 10 and height 10.
See also:​
around, cone, line, link, norm, point, polygon, polyline, rectangle, square, circle, squircle, triangle,
elliptical_arc
​
Possible use:​
elliptical_arc
(point
,point
,float
,int
) --->geometry
Result:​
An elliptical arc from the first operand (point) to the second operand (point), which radius is equal to the third operand, and a int giving the number of points to use as a last operand
Examples:​
geometry var0 <- elliptical_arc({0,0},{10,10},5.0, 20); // var0 equals a geometry from {0,0} to {10,10} considering a radius of 5.0 built using 20 points
See also:​
arc, around, cone, line, link, norm, point, polygon, polyline, super_ellipse, rectangle, square, circle, ellipse, triangle,
emotion
​
Possible use:​
emotion
(any
) --->emotion
Result:​
empty
​
Possible use:​
empty
(container<KeyType,ValueType>
) --->bool
empty
(string
) --->bool
Result:​
true if the operand is empty, false otherwise.
Comment:​
the empty operator behavior depends on the nature of the operand
Special cases:​
- if it is a map, empty returns true if the map contains no key-value mappings, and false otherwise
- if it is a file, empty returns true if the content of the file (that is also a container) is empty, and false otherwise
- if it is a population, empty returns true if there is no agent in the population, and false otherwise
- if it is a graph, empty returns true if it contains no vertex and no edge, and false otherwise
- if it is a matrix of int, float or object, it will return true if all elements are respectively 0, 0.0 or null, and false otherwise
- if it is a matrix of geometry, it will return true if the matrix contains no cell, and false otherwise
- if it is a list, empty returns true if there is no element in the list, and false otherwise
bool var0 <- empty([]); // var0 equals true
- if it is a string, empty returns true if the string does not contain any character, and false otherwise
bool var1 <- empty ('abced'); // var1 equals false
enlarged_by
​
Same signification as +
enter
​
Possible use:​
string
enter
bool
--->msi.gama.kernel.experiment.IParameter
enter
(string
,bool
) --->msi.gama.kernel.experiment.IParameter
string
enter
float
--->msi.gama.kernel.experiment.IParameter
enter
(string
,float
) --->msi.gama.kernel.experiment.IParameter
string
enter
int
--->msi.gama.kernel.experiment.IParameter
enter
(string
,int
) --->msi.gama.kernel.experiment.IParameter
string
enter
string
--->msi.gama.kernel.experiment.IParameter
enter
(string
,string
) --->msi.gama.kernel.experiment.IParameter
string
enter
unknown
--->msi.gama.kernel.experiment.IParameter
enter
(string
,unknown
) --->msi.gama.kernel.experiment.IParameter
string
enter
any GAML type
--->msi.gama.kernel.experiment.IParameter
enter
(string
,any GAML type
) --->msi.gama.kernel.experiment.IParameter
enter
(string
,any GAML type
,unknown
) --->msi.gama.kernel.experiment.IParameter
enter
(string
,float
,float
,float
) --->msi.gama.kernel.experiment.IParameter
enter
(string
,int
,int
,int
) --->msi.gama.kernel.experiment.IParameter
enter
(string
,int
,int
,int
,int
) --->msi.gama.kernel.experiment.IParameter
enter
(string
,float
,float
,float
,float
) --->msi.gama.kernel.experiment.IParameter
Result:​
Allows the user to enter a boolean value by specifying a title and an initial value Allows the user to enter an int by specifying a title, an initial value, a min, a max and a step value Allows the user to enter a float by specifying a title, an initial value, a min, a max and a step value Allows the user to enter a float by specifying a title and an initial value Allows the user to enter an int by specifying a title, an initial value, a min and a max value Allows the user to enter an int by specifying a title and an initial value Allows the user to enter a string by specifying a title and an initial value Allows the user to enter a value by specifying a title and an initial value. The type will be deduced from the value Allows the user to enter a value by specifying a title, a type, and an initial value Allows the user to enter an int by specifying a title, an initial value, a min and a max value Allows the user to enter a value by specifying a title and a type
envelope
​
Possible use:​
envelope
(unknown
) --->geometry
Result:​
A 3D geometry that represents the box that surrounds the geometries or the surface described by the arguments. More general than geometry(arguments).envelope, as it allows to pass int, double, point, image files, shape files, asc files, or any list combining these arguments, in which case the envelope will be correctly expanded. If an envelope cannot be determined from the arguments, a default one of dimensions (0,100, 0, 100, 0, 100) is returned
Special cases:​
- This operator is often used to define the environment of simulation
Examples:​
file road_shapefile <- file("../includes/roads.shp");
geometry shape <- envelope(road_shapefile);
// shape is the system variable of the environment
geometry var3 <- polygon([{0,0}, {20,0}, {10,10}, {10,0}]); // var3 equals create a polygon to get the envolpe
float var4 <- envelope(polygon([{0,0}, {20,0}, {10,10}, {10,0}])).area; // var4 equals 200.0
eval_gaml
​
Possible use:​
eval_gaml
(string
) --->unknown
Result:​
evaluates the given GAML string.
Examples:​
unknown var0 <- eval_gaml("2+3"); // var0 equals 5
eval_when
​
Possible use:​
eval_when
(BDIPlan
) --->bool
Result:​
evaluate the facet when of a given plan
Examples:​
eval_when(plan1)
evaluate_sub_model
​
Possible use:​
agent
evaluate_sub_model
string
--->unknown
evaluate_sub_model
(agent
,string
) --->unknown
Result:​
Load a submodel
Comment:​
loaded submodel
even
​
Possible use:​
even
(int
) --->bool
Result:​
Returns true if the operand is even and false if it is odd.
Special cases:​
- if the operand is equal to 0, it returns true.
- if the operand is a float, it is truncated before
Examples:​
bool var0 <- even (3); // var0 equals false
bool var1 <- even(-12); // var1 equals true
every
​
Possible use:​
every
(any expression
) --->bool
every
(int
) --->bool
list
every
int
--->list
every
(list
,int
) --->list
list
every
any expression
--->list<date>
every
(list
,any expression
) --->list<date>
Result:​
Retrieves elements from the first argument every step
(second argument) elements. Raises an error if the step is negative or equal to zero
expects a frequency (expressed in seconds of simulated time) as argument. Will return true every time the current_date matches with this frequency
true every operand * cycle, false otherwise
applies a step to an interval of dates defined by 'date1 to date2'
Comment:​
Used to do something at regular intervals of time. Can be used in conjunction with 'since', 'after', 'before', 'until' or 'between', so that this computation only takes place in the temporal segment defined by these operators. In all cases, the starting_date of the model is used as a reference starting pointthe value of the every operator depends on the cycle. It can be used to do something every x cycle.
Examples:​
reflex when: every(2#days) since date('2000-01-01') { .. }
state a { transition to: b when: every(2#mn);} state b { transition to: a when: every(30#s);} // This oscillatory behavior will use the starting_date of the model as its starting point in time
if every(2#cycle) {write "the cycle number is even";}
else {write "the cycle number is odd";}
(date('2000-01-01') to date('2010-01-01')) every (#month) // builds an interval between these two dates which contains all the monthly dates starting from the beginning of the interval
See also:​
every_cycle
​
Same signification as every
evidence_theory_DM
​
Possible use:​
list<list>
evidence_theory_DM
list<map<string,unknown>>
--->int
evidence_theory_DM
(list<list>
,list<map<string,unknown>>
) --->int
evidence_theory_DM
(list<list>
,list<map<string,unknown>>
,bool
) --->int
Result:​
The index of the best candidate according to a method based on the Evidence theory. This theory, which was proposed by Shafer ([http://www.glennshafer.com/books/amte.html Shafer G (1976) A mathematical theory of evidence, Princeton University Press]), is based on the work of Dempster ([http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177698950 Dempster A (1967) Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics, vol. 38, pp. 325--339]) on lower and upper probability distributions. The first operand is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion: A criterion is a map that contains seven elements: a name, a first threshold s1, a second threshold s2, a value for the assertion "this candidate is the best" at threshold s1 (v1p), a value for the assertion "this candidate is the best" at threshold s2 (v2p), a value for the assertion "this candidate is not the best" at threshold s1 (v1c), a value for the assertion "this candidate is not the best" at threshold s2 (v2c). v1p, v2p, v1c and v2c have to been defined in order that: v1p + v1c <= 1.0; v2p + v2c <= 1.0.; the last operand allows to use a simple version of this multi-criteria decision making method (simple if true)
Special cases:​
- returns -1 is the list of candidates is nil or empty
- if the operator is used with only 2 operands (the candidates and the criteria), the last parameter (use simple method) is set to true
Examples:​
int var0 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true],["name"::"price", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true]], false); // var0 equals 0
int var1 <- evidence_theory_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], [["name"::"utility", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true],["name"::"price", "s1" :: 0.0,"s2"::1.0, "v1p"::0.0, "v2p"::1.0, "v1c"::0.0, "v2c"::0.0, "maximize" :: true]]); // var1 equals 0
See also:​
weighted_means_DM, electre_DM,
exp
​
Possible use:​
exp
(float
) --->float
exp
(int
) --->float
Result:​
Returns Euler's number e raised to the power of the operand.
Special cases:​
- the operand is casted to a float before being evaluated.
- the operand is casted to a float before being evaluated.
Examples:​
float var0 <- exp (0.0); // var0 equals 1.0
See also:​
ln,
fact
​
Possible use:​
fact
(int
) --->float
Result:​
Returns the factorial of the operand.
Special cases:​
- if the operand is less than 0, fact returns 0.
Examples:​
float var0 <- fact(4); // var0 equals 24
farthest_point_to
​
Possible use:​
geometry
farthest_point_to
point
--->point
farthest_point_to
(geometry
,point
) --->point
Result:​
the farthest point of the left-operand to the left-point.
Examples:​
point var0 <- geom farthest_point_to(pt); // var0 equals the farthest point of geom to pt
See also:​
any_location_in, any_point_in, closest_points_with, points_at,
farthest_to
​
Possible use:​
container<unknown,geometry>
farthest_to
geometry
--->geometry
farthest_to
(container<unknown,geometry>
,geometry
) --->geometry
Result:​
An agent or a geometry among the left-operand list of agents, species or meta-population (addition of species), the farthest to the operand (casted as a geometry).
Comment:​
the distance is computed in the topology of the calling agent (the agent in which this operator is used), with the distance algorithm specific to the topology.
Examples:​
geometry var0 <- [ag1, ag2, ag3] closest_to(self); // var0 equals return the farthest agent among ag1, ag2 and ag3 to the agent applying the operator.
(species1 + species2) closest_to self
See also:​
neighbors_at, neighbors_of, inside, overlapping, agents_overlapping, agents_inside, agent_closest_to, closest_to, agent_farthest_to,
file
​
Possible use:​
file
(any
) --->file
file_exists
​
Possible use:​
file_exists
(string
) --->bool
Result:​
Test whether the parameter is the path to an existing file. False if it does not exist of if it is a folder
Examples:​
string file_name <-"../includes/buildings.shp";
if file_exists(file_name){
write "File exists in the computer";
}
first
​
Possible use:​
first
(container<KeyType,ValueType>
) --->ValueType
first
(string
) --->string
int
first
container
--->list
first
(int
,container
) --->list
Result:​
the first value of the operand
Comment:​
the first operator behavior depends on the nature of the operand
Special cases:​
- if it is a map, first returns the first value of the first pair (in insertion order)
- if it is a file, first returns the first element of the content of the file (that is also a container)
- if it is a population, first returns the first agent of the population
- if it is a graph, first returns the first edge (in creation order)
- if it is a matrix, first returns the element at {0,0} in the matrix
- for a matrix of int or float, it will return 0 if the matrix is empty
- for a matrix of object or geometry, it will return nil if the matrix is empty
- if it is a list, first returns the first element of the list, or nil if the list is empty
int var0 <- first ([1, 2, 3]); // var0 equals 1
- if it is a string, first returns a string composed of its first character
string var1 <- first ('abce'); // var1 equals 'a'
See also:​
last,
first_of
​
Same signification as first
first_with
​
Possible use:​
container
first_with
any expression
--->unknown
first_with
(container
,any expression
) --->unknown
Result:​
the first element of the left-hand operand that makes the right-hand operand evaluate to true.
Comment:​
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
Special cases:​
- if the left-hand operand is nil, first_with throws an error. If there is no element that satisfies the condition, it returns nil
- if the left-operand is a map, the keyword each will contain each value
unknown var4 <- [1::2, 3::4, 5::6] first_with (each >= 4); // var4 equals 4
unknown var5 <- [1::2, 3::4, 5::6].pairs first_with (each.value >= 4); // var5 equals (3::4)
Examples:​
unknown var0 <- [1,2,3,4,5,6,7,8] first_with (each > 3); // var0 equals 4
unknown var2 <- g2 first_with (length(g2 out_edges_of each) = 0); // var2 equals node9
unknown var3 <- (list(node) first_with (round(node(each).location.x) > 32); // var3 equals node2
See also:​
flip
​
Possible use:​
flip
(float
) --->bool
Result:​
true or false given the probability represented by the operand
Special cases:​
- flip 0 always returns false, flip 1 true
Examples:​
bool var0 <- flip (0.66666); // var0 equals 2/3 chances to return true.
See also:​
rnd,
float
​
Possible use:​
float
(any
) --->float
floor
​
Possible use:​
floor
(float
) --->float
Result:​
Maps the operand to the largest previous following integer, i.e. the largest integer not greater than x.
Examples:​
float var0 <- floor(3); // var0 equals 3.0
float var1 <- floor(3.5); // var1 equals 3.0
float var2 <- floor(-4.7); // var2 equals -5.0
See also:​
folder
​
Possible use:​
folder
(string
) --->file
Result:​
opens an existing repository
Special cases:​
- If the specified string does not refer to an existing repository, an exception is risen.
Examples:​
file dirT <- folder("../includes/");
// dirT represents the repository "../includes/"
// dirT.contents here contains the list of the names of included files
See also:​
folder_exists
​
Possible use:​
folder_exists
(string
) --->bool
Result:​
Test whether the parameter is the path to an existing folder. False if it doesnt exist or if it is a file
Examples:​
string file_name <-"../includes/";
if folder_exists(file_name){
write "Folder exists in the computer";
}
font
​
Possible use:​
string
font
int
--->font
font
(string
,int
) --->font
font
(string
,int
,int
) --->font
Result:​
Creates a new font, by specifying its name (either a font face name like 'Lucida Grande Bold' or 'Helvetica', or a logical name like 'Dialog', 'SansSerif', 'Serif', etc.), a size in points and a style, either #bold, #italic or #plain or a combination (addition) of them. Creates a new font, by specifying its name (either a font face name like 'Lucida Grande Bold' or 'Helvetica', or a logical name like 'Dialog', 'SansSerif', 'Serif', etc.) and a size in points. No style is attached to this font
Examples:​
font var0 <- font ('Helvetica Neue',12, #bold + #italic); // var0 equals a bold and italic face of the Helvetica Neue family
frequency_of
​
Possible use:​
container
frequency_of
any expression
--->map
frequency_of
(container
,any expression
) --->map
Result:​
Returns a map with keys equal to the application of the right-hand argument (like collect) and values equal to the frequency of this key (i.e. how many times it has been obtained)
Examples:​
map var0 <- [1, 2, 3, 3, 4, 4, 5, 3, 3, 4] frequency_of each; // var0 equals map([1::1,2::1,3::4,4::3,5::1])
from
​
Same signification as since
fuzzy_choquet_DM
​
Possible use:​
fuzzy_choquet_DM
(list<list>
,list<string>
,map
) --->int
Result:​
The index of the candidate that maximizes the Fuzzy Choquet Integral value. The first operand is the list of candidates (a candidate is a list of criterion values); the second operand the list of criterion (list of string); the third operand the weights of each sub-set of criteria (map with list for key and float for value)
Special cases:​
- returns -1 is the list of candidates is nil or empty
Examples:​
int var0 <- fuzzy_choquet_DM([[1.0, 7.0],[4.0,2.0],[3.0, 3.0]], ["utility", "price", "size"],[["utility"]::0.5,["size"]::0.1,["price"]::0.4,["utility", "price"]::0.55]); // var0 equals 0
See also:​
promethee_DM, electre_DM, evidence_theory_DM,
fuzzy_kappa
​
Possible use:​
fuzzy_kappa
(list<agent>
,list<unknown>
,list<unknown>
,list<float>
,list<unknown>
,matrix<float>
,float
) --->float
fuzzy_kappa
(list<agent>
,list<unknown>
,list<unknown>
,list<float>
,list<unknown>
,matrix<float>
,float
,list<unknown>
) --->float
Result:​
fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21 fuzzy kappa indicator for 2 map comparisons: fuzzy_kappa(agents_list,list_vals1,list_vals2, output_similarity_per_agents,categories,fuzzy_categories_matrix, fuzzy_distance, weights). Reference: Visser, H., and T. de Nijs, 2006. The map comparison kit, Environmental Modelling & Software, 21
Examples:​
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2)
fuzzy_kappa([ag1, ag2, ag3, ag4, ag5],[cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0],[0,1,0],[0,0,1]], 2, [1.0,3.0,2.0,2.0,4.0])
fuzzy_kappa_sim
​
Possible use:​
fuzzy_kappa_sim
(list<agent>
,list<unknown>
,list<unknown>
,list<unknown>
,list<float>
,list<unknown>
,matrix<float>
,float
) --->float
fuzzy_kappa_sim
(list<agent>
,list<unknown>
,list<unknown>
,list<unknown>
,list<float>
,list<unknown>
,matrix<float>
,float
,list<unknown>
) --->float
Result:​
fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance, weights). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800, fuzzy kappa simulation indicator for 2 map comparisons: fuzzy_kappa_sim(agents_list,list_vals1,list_vals2, output_similarity_per_agents,fuzzy_transitions_matrix, fuzzy_distance). Reference: Jasper van Vliet, Alex Hagen-Zanker, Jelle Hurkens, Hedwig van Delden, A fuzzy set approach to assess the predictive accuracy of land use simulations, Ecological Modelling, 24 July 2013, Pages 32-42, ISSN 0304-3800,
Examples:​
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2,[1.0,3.0,2.0,2.0,4.0])
fuzzy_kappa_sim([ag1, ag2, ag3, ag4, ag5], [cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2], similarity_per_agents,[cat1,cat2,cat3],[[1,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0,1]], 2)
gaml_file
​
Possible use:​
gaml_file
(string
) --->file
gaml_file
(string
,string
,string
) --->file
Result:​
Constructs a file of type gaml. Allowed extensions are limited to gaml, experiment
Special cases:​
- gaml_file(string): This file constructor allows to read a gaml file (.gaml)
file f <- gaml_file("file.gaml");
- gaml_file(string,string,string): This file constructor allows to compile a gaml file and run an experiment
file f <- gaml_file("file.gaml", "my_experiment", "my_model");
See also:​
gaml_type
​
Possible use:​
gaml_type
(any
) --->gaml_type
gamma
​
Possible use:​
gamma
(float
) --->float
Result:​
Returns the value of the Gamma function at x.
Examples:​
float var0 <- gamma(5); // var0 equals 24.0
gamma_density
​
Possible use:​
gamma_density
(float
,float
,float
) --->float
Result:​
gamma_density(x,shape,scale) returns the probability density function (PDF) at the specified point x of the Gamma distribution with the given shape and scale.
Examples:​
float var0 <- gamma_density(1,9,0.5); // var0 equals 0.731
See also:​
binomial, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd, weibull_density, lognormal_density,
gamma_distribution
​
Possible use:​
gamma_distribution
(float
,float
,float
) --->float
Result:​
Returns the integral from zero to x of the gamma probability density function.
Comment:​
incomplete_gamma(a,x) is equal to pgamma(a,1,x).
Examples:​
float var0 <- gamma_distribution(2,3,0.9) with_precision(3); // var0 equals 0.269
gamma_distribution_complemented
​
Possible use:​
gamma_distribution_complemented
(float
,float
,float
) --->float
Result:​
Returns the integral from x to infinity of the gamma probability density function.
Examples:​
float var0 <- gamma_distribution_complemented(2,3,0.9) with_precision(3); // var0 equals 0.731
gamma_index
​
Possible use:​
gamma_index
(graph
) --->float
Result:​
returns the gamma index of the graph (A measure of connectivity that considers the relationship between the number of observed links and the number of possible links: gamma = e/(3 *
(v - 2)) - for planar graph.
Examples:​
graph graphEpidemio <- graph([]);
float var1 <- gamma_index(graphEpidemio); // var1 equals the gamma index of the graph
See also:​
alpha_index, beta_index, nb_cycles, connectivity_index,
gamma_rnd
​
Possible use:​
float
gamma_rnd
float
--->float
gamma_rnd
(float
,float
) --->float
Result:​
returns a random value from a gamma distribution with specified values of the shape and scale parameters
Examples:​
float var0 <- gamma_rnd(9,0.5); // var0 equals 0.731
See also:​
binomial, gauss_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd, gamma_trunc_rnd,
gamma_trunc_rnd
​
Possible use:​
gamma_trunc_rnd
(float
,float
,float
,bool
) --->float
gamma_trunc_rnd
(float
,float
,float
,float
) --->float
Result:​
returns a random value from a truncated gamma distribution (in a range or given only one boundary) with specified values of the shape and scale parameters.
Special cases:​
- when 1 float and a boolean (isMax) operands are specified, the float value represents the single boundary (max if the boolean is true, min otherwise),
gamma_trunc_rnd(2,3,5,true)
- when 2 float operands are specified, they are taken as mininimum and maximum values for the result
gamma_trunc_rnd(2,3,0,5)
See also:​
gamma_rnd, weibull_trunc_rnd, lognormal_trunc_rnd, truncated_gauss,
gauss
​
Possible use:​
gauss
(point
) --->float
float
gauss
float
--->float
gauss
(float
,float
) --->float
Result:​
A value from a normally distributed random variable with expected value (mean as first operand) and variance (standardDeviation as second operand). The probability density function of such a variable is a Gaussian. The operator can be used with an operand of type point {meand,standardDeviation}.
Special cases:​
- when standardDeviation value is 0.0, it always returns the mean value
- when the operand is a point, it is read as {mean, standardDeviation}
Examples:​
float var0 <- gauss(0,0.3); // var0 equals 0.22354
float var1 <- gauss({0,0.3}); // var1 equals 0.22354
See also:​
binomial, gamma_rnd, lognormal_rnd, poisson, rnd, skew_gauss, truncated_gauss, weibull_rnd,
gauss_rnd
​
Same signification as gauss
generate_barabasi_albert
​
Possible use:​
generate_barabasi_albert
(container<unknown,agent>
,species
,int
,bool
) --->graph
generate_barabasi_albert
(species
,species
,int
,int
,bool
) --->graph
Result:​
returns a random scale-free network (following Barabasi-Albert (BA) model). returns a random scale-free network (following Barabasi-Albert (BA) model).
Comment:​
The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.Such networks are widely observed in natural and human-made systems, including the Internet, the world wide web, citation networks, and some social networks. [From Wikipedia article]The map operand should includes following elements:The Barabasi-Albert (BA) model is an algorithm for generating random scale-free networks using a preferential attachment mechanism. A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.Such networks are widely observed in natural and human-made systems, including the Internet, the world wide web, citation networks, and some social networks. [From Wikipedia article]The map operand should includes following elements:
Special cases:​
- "agents": list of existing node agents
- "edges_species": the species of edges
- "size": the graph will contain (size + 1) nodes
- "m": the number of edges added per novel node
- "synchronized": is the graph and the species of vertices and edges synchronized?
- "vertices_specy": the species of vertices
- "edges_species": the species of edges
- "size": the graph will contain (size + 1) nodes
- "m": the number of edges added per novel node
- "synchronized": is the graph and the species of vertices and edges synchronized?
Examples:​
graph<yourNodeSpecy,yourEdgeSpecy> graphEpidemio <- generate_barabasi_albert(
yourListOfNodes,
yourEdgeSpecy,
3,
5,
true);
graph<yourNodeSpecy,yourEdgeSpecy> graphEpidemio <- generate_barabasi_albert(
yourNodeSpecy,
yourEdgeSpecy,
3,
5,
true);
See also:​
generate_complete_graph
​
Possible use:​
generate_complete_graph
(container<unknown,agent>
,species
,bool
) --->graph
generate_complete_graph
(species
,species
,int
,bool
) --->graph
generate_complete_graph
(container<unknown,agent>
,species
,float
,bool
) --->graph
generate_complete_graph
(species
,species
,int
,float
,bool
) --->graph
Result:​
returns a fully connected graph. returns a fully connected graph. returns a fully connected graph. returns a fully connected graph.
Comment:​
Arguments should include following elements:Arguments should include following elements:Arguments should include following elements:Arguments should include following elements:
Special cases:​
- "vertices_specy": the species of vertices
- "edges_species": the species of edges
- "size": the graph will contain size nodes.
- "synchronized": is the graph and the species of vertices and edges synchronized?
- "agents": list of existing node agents
- "edges_species": the species of edges
- "synchronized": is the graph and the species of vertices and edges synchronized?
- "vertices_specy": the species of vertices
- "edges_species": the species of edges
- "size": the graph will contain size nodes.
- "layoutRadius": nodes of the graph will be located on a circle with radius layoutRadius and centered in the environment.
- "synchronized": is the graph and the species of vertices and edges synchronized?
- "agents": list of existing node agents
- "edges_species": the species of edges
- "layoutRadius": nodes of the graph will be located on a circle with radius layoutRadius and centered in the environment.
- "synchronized": is the graph and the species of vertices and edges synchronized?
Examples:​
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myVertexSpecy,
myEdgeSpecy,
10,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myListOfNodes,
myEdgeSpecy,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myVertexSpecy,
myEdgeSpecy,
10, 25,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_complete_graph(
myListOfNodes,
myEdgeSpecy,
25,
true);
See also:​
generate_barabasi_albert, generate_watts_strogatz,
generate_watts_strogatz
​
Possible use:​
generate_watts_strogatz
(container<unknown,agent>
,species
,float
,int
,bool
) --->graph
generate_watts_strogatz
(species
,species
,int
,float
,int
,bool
) --->graph
Result:​
returns a random small-world network (following Watts-Strogatz model). returns a random small-world network (following Watts-Strogatz model).
Comment:​
The Watts-Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering.A small-world network is a type of graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps. [From Wikipedia article]The map operand should includes following elements:The Watts-Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering.A small-world network is a type of graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps. [From Wikipedia article]The map operand should includes following elements:
Special cases:​
- "vertices_specy": the species of vertices
- "edges_species": the species of edges
- "size": the graph will contain (size + 1) nodes. Size must be greater than k.
- "p": probability to "rewire" an edge. So it must be between 0 and 1. The parameter is often called beta in the literature.
- "k": the base degree of each node. k must be greater than 2 and even.
- "synchronized": is the graph and the species of vertices and edges synchronized?
- "agents": list of existing node agents
- "edges_species": the species of edges
- "p": probability to "rewire" an edge. So it must be between 0 and 1. The parameter is often called beta in the literature.
- "k": the base degree of each node. k must be greater than 2 and even.
- "synchronized": is the graph and the species of vertices and edges synchronized?
Examples:​
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz(
myVertexSpecy,
myEdgeSpecy,
2,
0.3,
2,
true);
graph<myVertexSpecy,myEdgeSpecy> myGraph <- generate_watts_strogatz(
myListOfNodes,
myEdgeSpecy,
0.3,
2,
true);
See also:​
geojson_file
​
Possible use:​
geojson_file
(string
) --->file
string
geojson_file
int
--->file
geojson_file
(string
,int
) --->file
string
geojson_file
string
--->file
geojson_file
(string
,string
) --->file
string
geojson_file
bool
--->file
geojson_file
(string
,bool
) --->file
geojson_file
(string
,int
,bool
) --->file
geojson_file
(string
,string
,bool
) --->file
Result:​
Constructs a file of type geojson. Allowed extensions are limited to json, geojson, geo.json
Special cases:​
- geojson_file(string): This file constructor allows to read a geojson file (https://geojson.org/)
file f <- geojson_file("file.json");
- geojson_file(string,int): This file constructor allows to read a geojson file and specifying the coordinates system code, as an int
file f <- geojson_file("file.json", 32648);
- geojson_file(string,string): This file constructor allows to read a geojson file and specifying the coordinates system code (epg,...,), as a string
file f <- geojson_file("file.json", "EPSG:32648");
- geojson_file(string,bool): This file constructor allows to read a geojson file and take a potential z value (not taken in account by default)
file f <- geojson_file("file.json", true);
- geojson_file(string,int,bool): This file constructor allows to read a geojson file, specifying the coordinates system code, as an int and take a potential z value (not taken in account by default)
file f <- geojson_file("file.json",32648, true);
- geojson_file(string,string,bool): This file constructor allows to read a geojson file, specifying the coordinates system code (epg,...,), as a string and take a potential z value (not taken in account by default
file f <- geojson_file("file.json", "EPSG:32648",true);
See also:​
geometric_mean
​
Possible use:​
geometric_mean
(container
) --->float
Result:​
the geometric mean of the elements of the operand. See Geometric_mean for more details.
Comment:​
The operator casts all the numerical element of the list into float. The elements that are not numerical are discarded.
Examples:​
float var0 <- geometric_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.962326343467649
See also:​
geometry
​
Possible use:​
geometry
(any
) --->geometry
geometry_collection
​
Possible use:​
geometry_collection
(container<unknown,geometry>
) --->geometry
Result:​
A geometry collection (multi-geometry) composed of the given list of geometries.
Special cases:​
- if the operand is nil, returns the point geometry {0,0}
- if the operand is composed of a single geometry, returns a copy of the geometry.
Examples:​
geometry var0 <- geometry_collection([{0,0}, {0,10}, {10,10}, {10,0}]); // var0 equals a geometry composed of the 4 points (multi-point).
See also:​
around, circle, cone, link, norm, point, polygone, rectangle, square, triangle, line,
get
​
Possible use:​
geometry
get
string
--->unknown
get
(geometry
,string
) --->unknown
agent
get
string
--->unknown
get
(agent
,string
) --->unknown
Result:​
Reads an attribute of the specified geometry (left operand). The attribute name is specified by the right operand. Reads an attribute of the specified agent (left operand). The attribute name is specified by the right operand.
Special cases:​
- Reading the attribute of a geometry
string geom_area <- a_geometry get('area'); // reads then 'area' attribute of 'a_geometry' variable then assigns the returned value to the geom_area variable
- Reading the attribute of another agent
string agent_name <- an_agent get('name'); // reads then 'name' attribute of an_agent then assigns the returned value to the agent_name variable
get_about
​
Possible use:​
get_about
(emotion
) --->predicate
Result:​
get the about value of the given emotion
Examples:​
get_about(emotion)
get_agent
​
Possible use:​
get_agent
(social_link
) --->agent
Result:​
get the agent value of the given social link
Examples:​
get_agent(social_link1)
get_agent_cause
​
Possible use:​
get_agent_cause
(predicate
) --->agent
get_agent_cause
(emotion
) --->agent
Result:​
evaluate the agent_cause value of a predicate get the agent cause value of the given emotion
Examples:​
get_agent_cause(pred1)
get_agent_cause(emotion)
get_belief_op
​
Possible use:​
agent
get_belief_op
predicate
--->mental_state
get_belief_op
(agent
,predicate
) --->mental_state
Result:​
get the belief in the belief base with the given predicate.
Examples:​
mental_state var0 <- get_belief_op(self,predicate("has_water")); // var0 equals nil
get_belief_with_name_op
​
Possible use:​
agent
get_belief_with_name_op
string
--->mental_state
get_belief_with_name_op
(agent
,string
) --->mental_state
Result:​
get the belief in the belief base with the given name.
Examples:​
mental_state var0 <- get_belief_with_name_op(self,"has_water"); // var0 equals nil
get_beliefs_op
​
Possible use:​
agent
get_beliefs_op
predicate
--->list<mental_state>
get_beliefs_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the beliefs in the belief base with the given predicate.
Examples:​
get_beliefs_op(self,predicate("has_water"))
get_beliefs_with_name_op
​
Possible use:​
agent
get_beliefs_with_name_op
string
--->list<mental_state>
get_beliefs_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of beliefs in the belief base which predicate has the given name.
Examples:​
get_beliefs_with_name_op(self,"has_water")
get_current_intention_op
​
Possible use:​
get_current_intention_op
(agent
) --->mental_state
Result:​
get the current intention.
Examples:​
mental_state var0 <- get_current_intention_op(self); // var0 equals nil
get_decay
​
Possible use:​
get_decay
(emotion
) --->float
Result:​
get the decay value of the given emotion
Examples:​
get_decay(emotion)
get_desire_op
​
Possible use:​
agent
get_desire_op
predicate
--->mental_state
get_desire_op
(agent
,predicate
) --->mental_state
Result:​
get the desire in the desire base with the given predicate.
Examples:​
mental_state var0 <- get_belief_op(self,predicate("has_water")); // var0 equals nil
get_desire_with_name_op
​
Possible use:​
agent
get_desire_with_name_op
string
--->mental_state
get_desire_with_name_op
(agent
,string
) --->mental_state
Result:​
get the desire in the desire base with the given name.
Examples:​
mental_state var0 <- get_desire_with_name_op(self,"has_water"); // var0 equals nil
get_desires_op
​
Possible use:​
agent
get_desires_op
predicate
--->list<mental_state>
get_desires_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the desires in the desire base with the given predicate.
Examples:​
get_desires_op(self,predicate("has_water"))
get_desires_with_name_op
​
Possible use:​
agent
get_desires_with_name_op
string
--->list<mental_state>
get_desires_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of desires in the desire base which predicate has the given name.
Examples:​
get_desires_with_name_op(self,"has_water")
get_dominance
​
Possible use:​
get_dominance
(social_link
) --->float
Result:​
get the dominance value of the given social link
Examples:​
get_dominance(social_link1)
get_familiarity
​
Possible use:​
get_familiarity
(social_link
) --->float
Result:​
get the familiarity value of the given social link
Examples:​
get_familiarity(social_link1)
get_ideal_op
​
Possible use:​
agent
get_ideal_op
predicate
--->mental_state
get_ideal_op
(agent
,predicate
) --->mental_state
Result:​
get the ideal in the ideal base with the given name.
Examples:​
mental_state var0 <- get_ideal_op(self,predicate("has_water")); // var0 equals nil
get_ideal_with_name_op
​
Possible use:​
agent
get_ideal_with_name_op
string
--->mental_state
get_ideal_with_name_op
(agent
,string
) --->mental_state
Result:​
get the ideal in the ideal base with the given name.
Examples:​
mental_state var0 <- get_ideal_with_name_op(self,"has_water"); // var0 equals nil
get_ideals_op
​
Possible use:​
agent
get_ideals_op
predicate
--->list<mental_state>
get_ideals_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the ideal in the ideal base with the given name.
Examples:​
get_ideals_op(self,predicate("has_water"))
get_ideals_with_name_op
​
Possible use:​
agent
get_ideals_with_name_op
string
--->list<mental_state>
get_ideals_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of ideals in the ideal base which predicate has the given name.
Examples:​
get_ideals_with_name_op(self,"has_water")
get_intensity
​
Possible use:​
get_intensity
(emotion
) --->float
Result:​
get the intensity value of the given emotion
Examples:​
get_intensity(emo1)
get_intention_op
​
Possible use:​
agent
get_intention_op
predicate
--->mental_state
get_intention_op
(agent
,predicate
) --->mental_state
Result:​
get the intention in the intention base with the given predicate.
Examples:​
get_intention_op(self,predicate("has_water"))
get_intention_with_name_op
​
Possible use:​
agent
get_intention_with_name_op
string
--->mental_state
get_intention_with_name_op
(agent
,string
) --->mental_state
Result:​
get the intention in the intention base with the given name.
Examples:​
get_intention_with_name_op(self,"has_water")
get_intentions_op
​
Possible use:​
agent
get_intentions_op
predicate
--->list<mental_state>
get_intentions_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the intentions in the intention base with the given predicate.
Examples:​
get_intentions_op(self,predicate("has_water"))
get_intentions_with_name_op
​
Possible use:​
agent
get_intentions_with_name_op
string
--->list<mental_state>
get_intentions_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of intentions in the intention base which predicate has the given name.
Examples:​
get_intentions_with_name_op(self,"has_water")
get_lifetime
​
Possible use:​
get_lifetime
(mental_state
) --->int
Result:​
get the lifetime value of the given mental state
Examples:​
get_lifetime(mental_state1)
get_liking
​
Possible use:​
get_liking
(social_link
) --->float
Result:​
get the liking value of the given social link
Examples:​
get_liking(social_link1)
get_modality
​
Possible use:​
get_modality
(mental_state
) --->string
Result:​
get the modality value of the given mental state
Examples:​
get_modality(mental_state1)
get_obligation_op
​
Possible use:​
agent
get_obligation_op
predicate
--->mental_state
get_obligation_op
(agent
,predicate
) --->mental_state
Result:​
get the obligation in the obligation base with the given predicate.
Examples:​
mental_state var0 <- get_obligation_op(self,predicate("has_water")); // var0 equals nil
get_obligation_with_name_op
​
Possible use:​
agent
get_obligation_with_name_op
string
--->mental_state
get_obligation_with_name_op
(agent
,string
) --->mental_state
Result:​
get the obligation in the obligation base with the given name.
Examples:​
mental_state var0 <- get_obligation_with_name_op(self,"has_water"); // var0 equals nil
get_obligations_op
​
Possible use:​
agent
get_obligations_op
predicate
--->list<mental_state>
get_obligations_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the obligations in the obligation base with the given predicate.
Examples:​
get_obligations_op(self,predicate("has_water"))
get_obligations_with_name_op
​
Possible use:​
agent
get_obligations_with_name_op
string
--->list<mental_state>
get_obligations_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of obligations in the obligation base which predicate has the given name.
Examples:​
get_obligations_with_name_op(self,"has_water")
get_plan_name
​
Possible use:​
get_plan_name
(BDIPlan
) --->string
Result:​
get the name of a given plan
Examples:​
get_plan_name(agent.current_plan)
get_predicate
​
Possible use:​
get_predicate
(mental_state
) --->predicate
Result:​
get the predicate value of the given mental state
Examples:​
get_predicate(mental_state1)
get_solidarity
​
Possible use:​
get_solidarity
(social_link
) --->float
Result:​
get the solidarity value of the given social link
Examples:​
get_solidarity(social_link1)
get_strength
​
Possible use:​
get_strength
(mental_state
) --->float
Result:​
get the strength value of the given mental state
Examples:​
get_strength(mental_state1)
get_super_intention
​
Possible use:​
get_super_intention
(predicate
) --->mental_state
Result:​
get the super intention linked to a mental state
Examples:​
get_super_intention(get_belief(pred1))
get_trust
​
Possible use:​
get_trust
(social_link
) --->float
Result:​
get the familiarity value of the given social link
Examples:​
get_familiarity(social_link1)
get_truth
​
Possible use:​
get_truth
(predicate
) --->bool
Result:​
evaluate the truth value of a predicate
Examples:​
get_truth(pred1)
get_uncertainties_op
​
Possible use:​
agent
get_uncertainties_op
predicate
--->list<mental_state>
get_uncertainties_op
(agent
,predicate
) --->list<mental_state>
Result:​
get the uncertainties in the uncertainty base with the given predicate.
Examples:​
get_uncertainties_op(self,predicate("has_water"))
get_uncertainties_with_name_op
​
Possible use:​
agent
get_uncertainties_with_name_op
string
--->list<mental_state>
get_uncertainties_with_name_op
(agent
,string
) --->list<mental_state>
Result:​
get the list of uncertainties in the uncertainty base which predicate has the given name.
Examples:​
get_uncertainties_with_name_op(self,"has_water")
get_uncertainty_op
​
Possible use:​
agent
get_uncertainty_op
predicate
--->mental_state
get_uncertainty_op
(agent
,predicate
) --->mental_state
Result:​
get the uncertainty in the uncertainty base with the given predicate.
Examples:​
mental_state var0 <- get_uncertainty_op(self,predicate("has_water")); // var0 equals nil
get_uncertainty_with_name_op
​
Possible use:​
agent
get_uncertainty_with_name_op
string
--->mental_state
get_uncertainty_with_name_op
(agent
,string
) --->mental_state
Result:​
get the uncertainty in the uncertainty base with the given name.
Examples:​
mental_state var0 <- get_uncertainty_with_name_op(self,"has_water"); // var0 equals nil
get_values
​
Possible use:​
get_values
(predicate
) --->map<string,unknown>
Result:​
return the map values of a predicate
Examples:​
get_values(pred1)
gif_file
​
Possible use:​
gif_file
(string
) --->file
string
gif_file
matrix<int>
--->file
gif_file
(string
,matrix<int>
) --->file
Result:​
Constructs a file of type gif. Allowed extensions are limited to gif
Special cases:​
- gif_file(string): This file constructor allows to read a gif file
gif_file f <- gif_file("file.gif");
- gif_file(string,matrix<int>): This file constructor allows to store a matrix in a gif file (it does not save it - just store it in memory)
gif_file f <- gif_file("file.gif",matrix([10,10],[10,10]));
See also:​
gini
​
Possible use:​
gini
(list<float>
) --->float
Special cases:​
- return the Gini Index of the given list of values (list of floats)
float var0 <- gini([1.0, 0.5, 2.0]); // var0 equals the gini index computed i.e. 0.2857143
gml_file
​
Possible use:​
gml_file
(string
) --->file
string
gml_file
int
--->file
gml_file
(string
,int
) --->file
string
gml_file
string
--->file
gml_file
(string
,string
) --->file
string
gml_file
bool
--->file
gml_file
(string
,bool
) --->file
gml_file
(string
,int
,bool
) --->file
gml_file
(string
,string
,bool
) --->file
Result:​
Constructs a file of type gml. Allowed extensions are limited to gml
Special cases:​
- gml_file(string): This file constructor allows to read a gml file
file f <- gml_file("file.gml");
- gml_file(string,int): This file constructor allows to read a gml file and specifying the coordinates system code, as an int (epsg code)
file f <- gml_file("file.gml", 32648);
- gml_file(string,string): This file constructor allows to read a gml file and specifying the coordinates system code (epg,...,), as a string
file f <- gml_file("file.gml", "EPSG:32648");
- gml_file(string,bool): This file constructor allows to read a gml file and take a potential z value (not taken in account by default)
file f <- gml_file("file.gml", true);
- gml_file(string,int,bool): This file constructor allows to read a gml file, specifying the coordinates system code, as an int (epsg code) and take a potential z value (not taken in account by default)
file f <- gml_file("file.gml", 32648, true);
- gml_file(string,string,bool): This file constructor allows to read a gml file, specifying the coordinates system code (epg,...,), as a string and take a potential z value (not taken in account by default
file f <- gml_file("file.gml", "EPSG:32648",true);
See also:​
graph
​
Possible use:​
graph
(any
) --->graph
grayscale
​
Possible use:​
grayscale
(rgb
) --->rgb
Result:​
Converts rgb color to grayscale value
Comment:​
r=red, g=green, b=blue. Between 0 and 255 and gray = 0.299 *
red + 0.587 *
green + 0.114 *
blue (Photoshop value)
Examples:​
rgb var0 <- grayscale (rgb(255,0,0)); // var0 equals to a dark grey
See also:​
grid_at
​
Possible use:​
species
grid_at
point
--->agent
grid_at
(species
,point
) --->agent
Result:​
returns the cell of the grid (right-hand operand) at the position given by the right-hand operand
Comment:​
If the left-hand operand is a point of floats, it is used as a point of ints.
Special cases:​
- if the left-hand operand is not a grid cell species, returns nil
Examples:​
agent var0 <- grid_cell grid_at {1,2}; // var0 equals the agent grid_cell with grid_x=1 and grid_y = 2
grid_cells_to_graph
​
Possible use:​
grid_cells_to_graph
(container
) --->graph
container
grid_cells_to_graph
species
--->graph
grid_cells_to_graph
(container
,species
) --->graph
Result:​
creates a graph from a list of cells (operand). An edge is created between neighbors.
Examples:​
my_cell_graph<-grid_cells_to_graph(cells_list)
See also:​
as_intersection_graph, as_edge_graph,
grid_file
​
Possible use:​
grid_file
(string
) --->file
string
grid_file
int
--->file
grid_file
(string
,int
) --->file
string
grid_file
string
--->file
grid_file
(string
,string
) --->file
Result:​
Constructs a file of type grid. Allowed extensions are limited to asc, tif
Special cases:​
- grid_file(string): This file constructor allows to read a asc file or a tif (geotif) file
file f <- grid_file("file.asc");
- grid_file(string,int): This file constructor allows to read a asc file or a tif (geotif) file specifying the coordinates system code, as an int (epsg code)
file f <- grid_file("file.asc", 32648);
- grid_file(string,string): This file constructor allows to read a asc file or a tif (geotif) file specifying the coordinates system code (epg,...,), as a string
file f <- grid_file("file.asc","EPSG:32648");
See also:​
group_by
​
Possible use:​
container
group_by
any expression
--->map
group_by
(container
,any expression
) --->map
Result:​
Returns a map, where the keys take the possible values of the right-hand operand and the map values are the list of elements of the left-hand operand associated to the key value
Comment:​
in the right-hand operand, the keyword each can be used to represent, in turn, each of the right-hand operand elements.
Special cases:​
- if the left-hand operand is nil, group_by throws an error
Examples:​
map var0 <- [1,2,3,4,5,6,7,8] group_by (each > 3); // var0 equals [false::[1, 2, 3], true::[4, 5, 6, 7, 8]]
map var1 <- g2 group_by (length(g2 out_edges_of each) ); // var1 equals [ 0::[node9, node7, node10, node8, node11], 1::[node6], 2::[node5], 3::[node4]]
map var2 <- (list(node) group_by (round(node(each).location.x)); // var2 equals [32::[node5], 21::[node1], 4::[node0], 66::[node2], 96::[node3]]
map<bool,list> var3 <- [1::2, 3::4, 5::6] group_by (each > 4); // var3 equals [false::[2, 4], true::[6]]
See also:​
harmonic_mean
​
Possible use:​
harmonic_mean
(container
) --->float
Result:​
the harmonic mean of the elements of the operand. See Harmonic_mean for more details.
Comment:​
The operator casts all the numerical element of the list into float. The elements that are not numerical are discarded.
Examples:​
float var0 <- harmonic_mean ([4.5, 3.5, 5.5, 7.0]); // var0 equals 4.804159445407279
See also:​
has_belief_op
​
Possible use:​
agent
has_belief_op
predicate
--->bool
has_belief_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is a belief about the given predicate.
Examples:​
bool var0 <- has_belief_op(self,predicate("has_water")); // var0 equals false
has_belief_with_name_op
​
Possible use:​
agent
has_belief_with_name_op
string
--->bool
has_belief_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is a belief about the given name.
Examples:​
bool var0 <- has_belief_with_name_op(self,"has_water"); // var0 equals false
has_desire_op
​
Possible use:​
agent
has_desire_op
predicate
--->bool
has_desire_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is a desire about the given predicate.
Examples:​
bool var0 <- has_desire_op(self,predicate("has_water")); // var0 equals false
has_desire_with_name_op
​
Possible use:​
agent
has_desire_with_name_op
string
--->bool
has_desire_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is a desire about the given name.
Examples:​
bool var0 <- has_desire_with_name_op(self,"has_water"); // var0 equals false
has_ideal_op
​
Possible use:​
agent
has_ideal_op
predicate
--->bool
has_ideal_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is an ideal about the given predicate.
Examples:​
bool var0 <- has_ideal_op(self,predicate("has_water")); // var0 equals false
has_ideal_with_name_op
​
Possible use:​
agent
has_ideal_with_name_op
string
--->bool
has_ideal_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is an ideal about the given name.
Examples:​
bool var0 <- has_ideal_with_name_op(self,"has_water"); // var0 equals false
has_intention_op
​
Possible use:​
agent
has_intention_op
predicate
--->bool
has_intention_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is an intention about the given predicate.
Examples:​
bool var0 <- has_intention_op(self,predicate("has_water")); // var0 equals false
has_intention_with_name_op
​
Possible use:​
agent
has_intention_with_name_op
string
--->bool
has_intention_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is an intention about the given name.
Examples:​
bool var0 <- has_intention_with_name_op(self,"has_water"); // var0 equals false
has_obligation_op
​
Possible use:​
agent
has_obligation_op
predicate
--->bool
has_obligation_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is an obligation about the given predicate.
Examples:​
bool var0 <- has_obligation_op(self,predicate("has_water")); // var0 equals false
has_obligation_with_name_op
​
Possible use:​
agent
has_obligation_with_name_op
string
--->bool
has_obligation_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is an obligation about the given name.
Examples:​
bool var0 <- has_obligation_with_name_op(self,"has_water"); // var0 equals false
has_uncertainty_op
​
Possible use:​
agent
has_uncertainty_op
predicate
--->bool
has_uncertainty_op
(agent
,predicate
) --->bool
Result:​
indicates if there already is an uncertainty about the given predicate.
Examples:​
bool var0 <- has_uncertainty_op(self,predicate("has_water")); // var0 equals false
has_uncertainty_with_name_op
​
Possible use:​
agent
has_uncertainty_with_name_op
string
--->bool
has_uncertainty_with_name_op
(agent
,string
) --->bool
Result:​
indicates if there already is an uncertainty about the given name.
Examples:​
bool var0 <- has_uncertainty_with_name_op(self,"has_water"); // var0 equals false
hexagon
​
Possible use:​
hexagon
(float
) --->geometry
hexagon
(point
) --->geometry
float
hexagon
float
--->geometry
hexagon
(float
,float
) --->geometry
Result:​
A hexagon geometry which the given with and height
Comment:​
the center of the hexagon is by default the location of the current agent in which has been called this operator.the center of the hexagon is by default the location of the current agent in which has been called this operator.the center of the hexagon is by default the location of the current agent in which has been called this operator.
Special cases:​
- returns nil if the operand is nil.
- returns nil if the operand is nil.
- returns nil if the operand is nil.
Examples:​
geometry var0 <- hexagon(10); // var0 equals a geometry as a hexagon of width of 10 and height of 10.
geometry var1 <- hexagon({10,5}); // var1 equals a geometry as a hexagon of width of 10 and height of 5.
geometry var2 <- hexagon(10,5); // var2 equals a geometry as a hexagon of width of 10 and height of 5.
See also:​
around, circle, cone, line, link, norm, point, polygon, polyline, rectangle, triangle,
hierarchical_clustering
​
Possible use:​
container<unknown,agent>
hierarchical_clustering
float
--->list
hierarchical_clustering
(container<unknown,agent>
,float
) --->list
Result:​
A tree (list of list) contained groups of agents clustered by distance considering a distance min between two groups.
Comment:​
use of hierarchical clustering with Minimum for linkage criterion between two groups of agents.
Examples:​
list var0 <- [ag1, ag2, ag3, ag4, ag5] hierarchical_clustering 20.0; // var0 equals for example, can return [[[ag1],[ag3]], [ag2], [[[ag4],[ag5]],[ag6]]
See also:​
simple_clustering_by_distance,
horizontal
​
Possible use:​
horizontal
(map<unknown,int>
) --->unknown<string>
hsb
​
Possible use:​
hsb
(float
,float
,float
) --->rgb
hsb
(float
,float
,float
,int
) --->rgb
hsb
(float
,float
,float
,float
) --->rgb
Result:​
Converts hsb (h=hue, s=saturation, b=brightness) value to Gama color
Comment:​
h,s and b components should be floating-point values between 0.0 and 1.0 and when used alpha should be an integer (between 0 and 255) or a float (between 0 and 1) . Examples: Red=(0.0,1.0,1.0), Yellow=(0.16,1.0,1.0), Green=(0.33,1.0,1.0), Cyan=(0.5,1.0,1.0), Blue=(0.66,1.0,1.0), Magenta=(0.83,1.0,1.0)
Examples:​
rgb var0 <- hsb (0.5,1.0,1.0,0.0); // var0 equals rgb("cyan",0)
rgb var1 <- hsb (0.0,1.0,1.0); // var1 equals rgb("red")
See also:​
rgb,
hypot
​
Possible use:​
hypot
(float
,float
,float
,float
) --->float
Result:​
Returns sqrt(x2 +y2) without intermediate overflow or underflow.
Special cases:​
- If either argument is infinite, then the result is positive infinity. If either argument is NaN and neither argument is infinite, then the result is NaN.
Examples:​
float var0 <- hypot(0,1,0,1); // var0 equals sqrt(2)