Skip to main content
Version: 1.8.1

6. Breeding

So far we created agents only during the initialization of the simulation. In this sixth step, we Illustrate how to create new agents during a simulation of a dynamic species.

Formulation

  • Adding of a reproduce behavior for the prey and predator species:
    • When an agent has enough energy, it has a certain probability to have a certain number of offspring.
    • The energy of the offspring is equal to the parent energy divided by the number of offspring.
    • The parent get the same energy as its offspring.

Model Definition

parameters

We add six new parameters related to breeding:

  • The reproduction probability for prey agents
  • The max number of offspring for prey agents
  • The minimum energy to reproduce for prey agents
  • The reproduction probability for predator agents
  • The max number of offspring for predator agents
  • The minimum energy to reproduce for predator agents

We define six new global variables in the global section:

global {
...
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
...
}

We define then the six corresponding parameters in the experiment:

parameter "Prey probability reproduce: " var: prey_proba_reproduce category: "Prey" ;
parameter "Prey nb max offsprings: " var: prey_nb_max_offsprings category: "Prey" ;
parameter "Prey energy reproduce: " var: prey_energy_reproduce category: "Prey" ;
parameter "Predator probability reproduce: " var: predator_proba_reproduce category: "Predator" ;
parameter "Predator nb max offsprings: " var: predator_nb_max_offsprings category: "Predator" ;
parameter "Predator energy reproduce: " var: predator_energy_reproduce category: "Predator" ;

parent species

The reproduction dynamics is the same for both prey and predator species, it can thus be implemented only once inside the parent species. But the values of the parameters will depend on the species, and thus have to be set with different values inside each of them.

We add three new variables for the generic_species:

  • proba_reproduce
  • nb_max_offsprings
  • energy_reproduce

We add as well a new reflex called reproduce:

  • this reflex is activated only when:
    • The energy of the agent is greater or equals to energy_reproduce
    • AND according to the probability proba_reproduce: for this second condition, we use the flip(proba) operator that returns true according to the probability proba (false otherwise).
  • this reflex creates nb_offsprings (random number between 1 and nb_max_offsprings) new agents of the species of the agent using the create statement: we use a species casting operator on the current agent.
    • the created agents are initialized as follows:
      • my_cell: my_cell of the agent creating the agents,
      • location: location of my_cell,
      • energy: energy of the agent creating the agents (use of keyword myself) divided by the number of offsprings.
  • after the agent creation, the reflex updates the energy value of the current agent with the value: energy / nb_offsprings.
species generic_species {
...
float proba_reproduce ;
int nb_max_offsprings;
float energy_reproduce;
...
reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- rnd(1, nb_max_offsprings);
create species(self) number: nb_offsprings {
myCell <- myself.myCell ;
location <- myCell.location ;
energy <- myself.energy / nb_offsprings ;
}
energy <- energy / nb_offsprings ;
}
}

Note that two keywords (pseudo-variables) can be used to make explicit references to some agents:

  • The agent that is currently executing the statements inside the block (for example a newly created agent): self
  • The agent that is executing the statement that contains this block (for instance, the agent that has called the create statement): myself

prey species

We specialize the prey species from the generic_species species as follows:

  • definition of the initial value of the agent variables
   species prey parent: generic_species {
...
float proba_reproduce <- prey_proba_reproduce ;
int nb_max_offsprings <- prey_nb_max_offsprings ;
float energy_reproduce <- prey_energy_reproduce ;
...
}

predator species

As done for the prey species, we specialize the predator species from the generic_species species:

  • definition of the initial value of the agent variables:
   species predator parent: generic_species {
...
float proba_reproduce <- predator_proba_reproduce ;
int nb_max_offsprings <- predator_nb_max_offsprings ;
float energy_reproduce <- predator_energy_reproduce ;
...
}

Complete Model

model prey_predator

global {
int nb_preys_init <- 200;
int nb_predators_init <- 20;
float prey_max_energy <- 1.0;
float prey_max_transfert <- 0.1;
float prey_energy_consum <- 0.05;
float predator_max_energy <- 1.0;
float predator_energy_transfert <- 0.5;
float predator_energy_consum <- 0.02;
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
int nb_preys -> {length(prey)};
int nb_predators -> {length(predator)};

init {
create prey number: nb_preys_init;
create predator number: nb_predators_init;
}
}

species generic_species {
float size <- 1.0;
rgb color;
float max_energy;
float max_transfert;
float energy_consum;
float proba_reproduce;
int nb_max_offsprings;
float energy_reproduce;
vegetation_cell my_cell <- one_of(vegetation_cell);
float energy <- rnd(max_energy) update: energy - energy_consum max: max_energy;

init {
location <- my_cell.location;
}

reflex basic_move {
my_cell <- one_of(my_cell.neighbors2);
location <- my_cell.location;
}

reflex eat {
energy <- energy + energy_from_eat();
}

reflex die when: energy <= 0 {
do die;
}

reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- rnd(1, nb_max_offsprings);
create species(self) number: nb_offsprings {
my_cell <- myself.my_cell;
location <- my_cell.location;
energy <- myself.energy / nb_offsprings;
}

energy <- energy / nb_offsprings;
}

float energy_from_eat {
return 0.0;
}

aspect base {
draw circle(size) color: color;
}
}

species prey parent: generic_species {
rgb color <- #blue;
float max_energy <- prey_max_energy;
float max_transfert <- prey_max_transfert;
float energy_consum <- prey_energy_consum;
float proba_reproduce <- prey_proba_reproduce;
int nb_max_offsprings <- prey_nb_max_offsprings;
float energy_reproduce <- prey_energy_reproduce;

float energy_from_eat {
float energy_transfert <- 0.0;
if(my_cell.food > 0) {
energy_transfert <- min([max_transfert, my_cell.food]);
my_cell.food <- my_cell.food - energy_transfert;
}
return energy_transfert;
}
}

species predator parent: generic_species {
rgb color <- #red;
float max_energy <- predator_max_energy;
float energy_transfert <- predator_energy_transfert;
float energy_consum <- predator_energy_consum;
float proba_reproduce <- predator_proba_reproduce;
int nb_max_offsprings <- predator_nb_max_offsprings;
float energy_reproduce <- predator_energy_reproduce;

float energy_from_eat {
list<prey> reachable_preys <- prey inside (my_cell);
if(! empty(reachable_preys)) {
ask one_of (reachable_preys) {
do die;
}
return energy_transfert;
}
return 0.0;
}
}

grid vegetation_cell width: 50 height: 50 neighbors: 4 {
float max_food <- 1.0;
float food_prod <- rnd(0.01);
float food <- rnd(1.0) max: max_food update: food + food_prod;
rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 * (1 - food)));
list<vegetation_cell> neighbors2 <- (self neighbors_at 2);
}

experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey";
parameter "Prey max energy: " var: prey_max_energy category: "Prey";
parameter "Prey max transfert: " var: prey_max_transfert category: "Prey";
parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey";
parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator";
parameter "Predator max energy: " var: predator_max_energy category: "Predator";
parameter "Predator energy transfert: " var: predator_energy_transfert category: "Predator";
parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator";
parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey';
parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey';
parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey';
parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator';
parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator';
parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator';

output {
display main_display {
grid vegetation_cell lines: #black;
species prey aspect: base;
species predator aspect: base;
}

monitor "Number of preys" value: nb_preys;
monitor "Number of predators" value: nb_predators;
}
}