Skip to main content
Version: 1.8.1

10. Charts

This 10th step illustrates how to define charts.

Formulation​

  • Addition of a new display to visualize:
    • One chart representing the evolution of the quantity of prey and predator agents over time.
    • Two histograms representing the energy distribution of the prey and predator agents.

Model Definition​

output​

GAMA can display various chart types:

  • Time series
  • Pie charts
  • Histograms

A chart must be defined in a display: it behaves exactly like any other layer.

Definition of a chart:

chart chart_name type: chart_type {
[data]
}

The data to draw are defined inside the chart block as follow, using the data statement:

data data_legend value: data_value

We add a new display called Population_information that refreshes every 5 simulation steps. Inside this display, we define 3 charts: one of type series (i.e. time series chart), two of type histogram:

  • "Species evolution"; background: white; size: {1, 0.5}; position: {0, 0}

    • data1: nb_preys; color : blue
    • data2: nb_predators; color : red
  • "Prey Energy Distribution"; background: lightGray; size: {0.5, 0.5}; position: {0, 0.5}

    • data "]0;0.25]": number of preys with (each.energy <= 0.25) ;
    • data "]0.25;0.5]": number of preys with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
    • data "]0.5;0.75]": number of preys with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
    • data "]0.75;1]": number of preys with (each.energy > 0.75) ;
  • "Predator Energy Distribution"; background: lightGray; size: {0.5, 0.5}; position: {0.5, 0.5}

    • data "]0;0.25]": number of predators with (each.energy <= 0.25) ;
    • data "]0.25;0.5]": number of predators with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
    • data "]0.5;0.75]": number of predators with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
    • data "]0.75;1]": number of predators with (each.energy > 0.75) ;

To evaluate the value of the data of the two histogram, we use the operator list count condition that returns the number of elements of list for which the condition is true.

display Population_information refresh:every(5#cycles) {
chart "Species evolution" type: series size: {1,0.5} position: {0, 0} {
data "number_of_preys" value: nb_preys color: #blue ;
data "number_of_predator" value: nb_predators color: #red ;
}
chart "Prey Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0, 0.5} {
data "]0;0.25]" value: prey count (each.energy <= 0.25) color:#blue;
data "]0.25;0.5]" value: prey count ((each.energy > 0.25) and (each.energy <= 0.5)) color:#blue;
data "]0.5;0.75]" value: prey count ((each.energy > 0.5) and (each.energy <= 0.75)) color:#blue;
data "]0.75;1]" value: prey count (each.energy > 0.75) color:#blue;
}
chart "Predator Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0.5, 0.5} {
data "]0;0.25]" value: predator count (each.energy <= 0.25) color: #red ;
data "]0.25;0.5]" value: predator count ((each.energy > 0.25) and (each.energy <= 0.5)) color: #red ;
data "]0.5;0.75]" value: predator count ((each.energy > 0.5) and (each.energy <= 0.75)) color: #red ;
data "]0.75;1]" value: predator count (each.energy > 0.75) color: #red;
}
}

Complete Model​

model prey_predator

global {
int nb_preys_init <- 200;
int nb_predators_init <- 20;
float prey_max_energy <- 1.0;
float prey_max_transfert <- 0.1;
float prey_energy_consum <- 0.05;
float predator_max_energy <- 1.0;
float predator_energy_transfert <- 0.5;
float predator_energy_consum <- 0.02;
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
int nb_preys -> {length(prey)};
int nb_predators -> {length(predator)};

init {
create prey number: nb_preys_init;
create predator number: nb_predators_init;
}

reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
do pause;
}
}

species generic_species {
float size <- 1.0;
rgb color;
float max_energy;
float max_transfert;
float energy_consum;
float proba_reproduce;
int nb_max_offsprings;
float energy_reproduce;
image_file my_icon;
vegetation_cell my_cell <- one_of(vegetation_cell);
float energy <- rnd(max_energy) update: energy - energy_consum max: max_energy;

init {
location <- my_cell.location;
}

reflex basic_move {
my_cell <- choose_cell();
location <- my_cell.location;
}

reflex eat {
energy <- energy + energy_from_eat();
}

reflex die when: energy <= 0 {
do die;
}

reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- rnd(1, nb_max_offsprings);
create species(self) number: nb_offsprings {
my_cell <- myself.my_cell;
location <- my_cell.location;
energy <- myself.energy / nb_offsprings;
}

energy <- energy / nb_offsprings;
}

float energy_from_eat {
return 0.0;
}

vegetation_cell choose_cell {
return nil;
}

aspect base {
draw circle(size) color: color;
}

aspect icon {
draw my_icon size: 2 * size;
}

aspect info {
draw square(size) color: color;
draw string(energy with_precision 2) size: 3 color: #black;
}
}

species prey parent: generic_species {
rgb color <- #blue;
float max_energy <- prey_max_energy;
float max_transfert <- prey_max_transfert;
float energy_consum <- prey_energy_consum;
float proba_reproduce <- prey_proba_reproduce;
int nb_max_offsprings <- prey_nb_max_offsprings;
float energy_reproduce <- prey_energy_reproduce;
image_file my_icon <- image_file("../includes/data/sheep.png");

float energy_from_eat {
float energy_transfert <- 0.0;
if(my_cell.food > 0) {
energy_transfert <- min([max_transfert, my_cell.food]);
my_cell.food <- my_cell.food - energy_transfert;
}
return energy_transfert;
}

vegetation_cell choose_cell {
return (my_cell.neighbors2) with_max_of (each.food);
}
}

species predator parent: generic_species {
rgb color <- #red;
float max_energy <- predator_max_energy;
float energy_transfert <- predator_energy_transfert;
float energy_consum <- predator_energy_consum;
float proba_reproduce <- predator_proba_reproduce;
int nb_max_offsprings <- predator_nb_max_offsprings;
float energy_reproduce <- predator_energy_reproduce;
image_file my_icon <- image_file("../includes/data/wolf.png");

float energy_from_eat {
list<prey> reachable_preys <- prey inside (my_cell);
if(! empty(reachable_preys)) {
ask one_of (reachable_preys) {
do die;
}
return energy_transfert;
}
return 0.0;
}

vegetation_cell choose_cell {
vegetation_cell my_cell_tmp <- shuffle(my_cell.neighbors2) first_with (!(empty(prey inside (each))));
if my_cell_tmp != nil {
return my_cell_tmp;
} else {
return one_of(my_cell.neighbors2);
}
}
}

grid vegetation_cell width: 50 height: 50 neighbors: 4 {
float max_food <- 1.0;
float food_prod <- rnd(0.01);
float food <- rnd(1.0) max: max_food update: food + food_prod;
rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 * (1 - food)));
list<vegetation_cell> neighbors2 <- (self neighbors_at 2);
}

experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey";
parameter "Prey max energy: " var: prey_max_energy category: "Prey";
parameter "Prey max transfert: " var: prey_max_transfert category: "Prey";
parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey";
parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator";
parameter "Predator max energy: " var: predator_max_energy category: "Predator";
parameter "Predator energy transfert: " var: predator_energy_transfert category: "Predator";
parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator";
parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey';
parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey';
parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey';
parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator';
parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator';
parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator';

output {
display main_display {
grid vegetation_cell lines: #black;
species prey aspect: icon;
species predator aspect: icon;
}

display info_display {
grid vegetation_cell lines: #black;
species prey aspect: info;
species predator aspect: info;
}

display Population_information refresh: every(5#cycles) {
chart "Species evolution" type: series size: {1,0.5} position: {0, 0} {
data "number_of_preys" value: nb_preys color: #blue;
data "number_of_predator" value: nb_predators color: #red;
}
chart "Prey Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0, 0.5} {
data "]0;0.25]" value: prey count (each.energy <= 0.25) color:#blue;
data "]0.25;0.5]" value: prey count ((each.energy > 0.25) and (each.energy <= 0.5)) color:#blue;
data "]0.5;0.75]" value: prey count ((each.energy > 0.5) and (each.energy <= 0.75)) color:#blue;
data "]0.75;1]" value: prey count (each.energy > 0.75) color:#blue;
}
chart "Predator Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0.5, 0.5} {
data "]0;0.25]" value: predator count (each.energy <= 0.25) color: #red;
data "]0.25;0.5]" value: predator count ((each.energy > 0.25) and (each.energy <= 0.5)) color: #red;
data "]0.5;0.75]" value: predator count ((each.energy > 0.5) and (each.energy <= 0.75)) color: #red;
data "]0.75;1]" value: predator count (each.energy > 0.75) color: #red;
}
}

monitor "Number of preys" value: nb_preys;
monitor "Number of predators" value: nb_predators;
}
}