4. Weight for Road Network
The present model will introduce how to design a road system, or graph, based on the road GIS data and provide each edge a weight
representing the destruction level of the road.
Formulation​
- Add a
destruction_coeff
variable to theroad
agent. The value of this variable is higher or equal to 1 or lower or equal to 2. At initialization, the value of this variable is randomly defined between 1 and 2. - In the road network graph, more a road is worn out (
destruction_coeff
high), more apeople
agent takes time to go all over it. Then the value of the arc representing the road in the graph is equal to "length of the road*
destruction_coeff". - The color of the road depends on the
destruction_coeff
. If "destruction_coeff = 1", the road is green, if "destruction_coeff = 2", the road is red.
Model Definition​
road agent​
We add a destruction_coeff
variable which initial value is randomly defined between 1 and 2 and which have a max of 2. The color of the agent will depend on this variable. In order to simplify the GAML code, we define a new variable colorValue
that represents the value of red color and that will be defined between 0 and 255.
species road {
float destruction_coeff <- rnd(1.0,2.0) max: 2.0;
int colorValue <- int(255*(destruction_coeff - 1)) update: int(255*(destruction_coeff - 1));
rgb color <- rgb(min([255, colorValue]),max ([0, 255 - colorValue]),0) update: rgb(min([255, colorValue]),max ([0, 255 - colorValue]),0) ;
...
}
weighted road network​
In GAMA, adding a weight for a graph is very simple, we use the with_weights
operator with the graph for left-operand and a weight map for the right-operand. The weight map contains the weight of each edge: [edge1::weight1, edge2:: weight2,...]. In this model, the weight will be equal to the length of the road (perimeter of the polyline) its destruction coefficient.
init {
...
create road from: shape_file_roads ;
map<road,float> weights_map <- road as_map (each:: (each.destruction_coeff * each.shape.perimeter));
the_graph <- as_edge_graph(road) with_weights weights_map;
...
}
Complete Model​
model tutorial_gis_city_traffic
global {
file shape_file_buildings <- file("../includes/building.shp");
file shape_file_roads <- file("../includes/road.shp");
file shape_file_bounds <- file("../includes/bounds.shp");
geometry shape <- envelope(shape_file_bounds);
float step <- 10 #mn;
date starting_date <- date("2019-09-01-00-00-00");
int nb_people <- 100;
int min_work_start <- 6;
int max_work_start <- 8;
int min_work_end <- 16;
int max_work_end <- 20;
float min_speed <- 1.0 #km / #h;
float max_speed <- 5.0 #km / #h;
graph the_graph;
init {
create building from: shape_file_buildings with: [type::string(read ("NATURE"))] {
if type="Industrial" {
color <- #blue ;
}
}
create road from: shape_file_roads ;
map<road,float> weights_map <- road as_map (each:: (each.destruction_coeff * each.shape.perimeter));
the_graph <- as_edge_graph(road) with_weights weights_map;
list<building> residential_buildings <- building where (each.type="Residential");
list<building> industrial_buildings <- building where (each.type="Industrial") ;
create people number: nb_people {
speed <- rnd(min_speed, max_speed);
start_work <- rnd (min_work_start, max_work_start);
end_work <- rnd(min_work_end, max_work_end);
living_place <- one_of(residential_buildings) ;
working_place <- one_of(industrial_buildings) ;
objective <- "resting";
location <- any_location_in (living_place);
}
}
}
species building {
string type;
rgb color <- #gray ;
aspect base {
draw shape color: color ;
}
}
species road {
float destruction_coeff <- rnd(1.0,2.0) max: 2.0;
int colorValue <- int(255*(destruction_coeff - 1)) update: int(255*(destruction_coeff - 1));
rgb color <- rgb(min([255, colorValue]),max ([0, 255 - colorValue]),0) update: rgb(min([255, colorValue]),max ([0, 255 - colorValue]),0) ;
aspect base {
draw shape color: color ;
}
}
species people skills:[moving] {
rgb color <- #yellow ;
building living_place <- nil ;
building working_place <- nil ;
int start_work ;
int end_work ;
string objective ;
point the_target <- nil ;
reflex time_to_work when: current_date.hour = start_work and objective = "resting"{
objective <- "working" ;
the_target <- any_location_in (working_place);
}
reflex time_to_go_home when: current_date.hour = end_work and objective = "working"{
objective <- "resting" ;
the_target <- any_location_in (living_place);
}
reflex move when: the_target != nil {
do goto target: the_target on: the_graph ;
if the_target = location {
the_target <- nil ;
}
}
aspect base {
draw circle(10) color: color border: #black;
}
}
experiment road_traffic type: gui {
parameter "Shapefile for the buildings:" var: shape_file_buildings category: "GIS" ;
parameter "Shapefile for the roads:" var: shape_file_roads category: "GIS" ;
parameter "Shapefile for the bounds:" var: shape_file_bounds category: "GIS" ;
parameter "Number of people agents" var: nb_people category: "People" ;
parameter "Earliest hour to start work" var: min_work_start category: "People" min: 2 max: 8;
parameter "Latest hour to start work" var: max_work_start category: "People" min: 8 max: 12;
parameter "Earliest hour to end work" var: min_work_end category: "People" min: 12 max: 16;
parameter "Latest hour to end work" var: max_work_end category: "People" min: 16 max: 23;
parameter "minimal speed" var: min_speed category: "People" min: 0.1 #km/#h ;
parameter "maximal speed" var: max_speed category: "People" max: 10 #km/#h;
output {
display city_display type: opengl {
species building aspect: base ;
species road aspect: base ;
species people aspect: base ;
}
}
}