Operators (S to Z)
This file is automatically generated from java files. Do Not Edit It.
Definition​
Operators in the GAML language are used to compose complex expressions. An operator performs a function on one, two, or n operands (which are other expressions and thus may be themselves composed of operators) and returns the result of this function.
Most of them use a classical prefixed functional syntax (i.e. operator_name(operand1, operand2, operand3)
, see below), with the exception of arithmetic (e.g. +
, /
), logical (and
, or
), comparison (e.g. >
, <
), access (.
, [..]
) and pair (::
) operators, which require an infixed notation (i.e. operand1 operator_symbol operand1
).
The ternary functional if-else operator, ? :
, uses a special infixed syntax composed with two symbols (e.g. operand1 ? operand2 : operand3
). Two unary operators (-
and !
) use a traditional prefixed syntax that does not require parentheses unless the operand is itself a complex expression (e.g. - 10
, ! (operand1 or operand2)
).
Finally, special constructor operators ({...}
for constructing points, [...]
for constructing lists and maps) will require their operands to be placed between their two symbols (e.g. {1,2,3}
, [operand1, operand2, ..., operandn]
or [key1::value1, key2::value2... keyn::valuen]
).
With the exception of these special cases above, the following rules apply to the syntax of operators:
- if they only have one operand, the functional prefixed syntax is mandatory (e.g.
operator_name(operand1)
) - if they have two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2)
) or the infixed syntax (e.g.operand1 operator_name operand2
) can be used. - if they have more than two arguments, either the functional prefixed syntax (e.g.
operator_name(operand1, operand2, ..., operand)
) or a special infixed syntax with the first operand on the left-hand side of the operator name (e.g.operand1 operator_name(operand2, ..., operand)
) can be used.
All of these alternative syntaxes are completely equivalent.
Operators in GAML are purely functional, i.e. they are guaranteed to not have any side effects on their operands. For instance, the shuffle
operator, which randomizes the positions of elements in a list, does not modify its list operand but returns a new shuffled list.
Priority between operators​
The priority of operators determines, in the case of complex expressions composed of several operators, which one(s) will be evaluated first.
GAML follows in general the traditional priorities attributed to arithmetic, boolean, comparison operators, with some twists. Namely:
- the constructor operators, like
::
, used to compose pairs of operands, have the lowest priority of all operators (e.g.a > b :: b > c
will return a pair of boolean values, which means that the two comparisons are evaluated before the operator applies. Similarly,[a > 10, b > 5]
will return a list of boolean values. - it is followed by the
?:
operator, the functional if-else (e.g.a > b ? a + 10 : a - 10
will return the result of the if-else). - next are the logical operators,
and
andor
(e.g.a > b or b > c
will return the value of the test) - next are the comparison operators (i.e.
>
,<
,<=
,>=
,=
,!=
) - next the arithmetic operators in their logical order (multiplicative operators have a higher priority than additive operators)
- next the unary operators
-
and!
- next the access operators
.
and[]
(e.g.{1,2,3}.x > 20 + {4,5,6}.y
will return the result of the comparison between the x and y ordinates of the two points) - and finally the functional operators, which have the highest priority of all.
Using actions as operators​
Actions defined in species can be used as operators, provided they are called on the correct agent. The syntax is that of normal functional operators, but the agent that will perform the action must be added as the first operand.
For instance, if the following species is defined:
species spec1 {
int min(int x, int y) {
return x > y ? x : y;
}
}
Any agent instance of spec1 can use min
as an operator (if the action conflicts with an existing operator, a warning will be emitted). For instance, in the same model, the following line is perfectly acceptable:
global {
init {
create spec1;
spec1 my_agent <- spec1[0];
int the_min <- my_agent min(10,20); // or min(my_agent, 10, 20);
}
}
If the action doesn't have any operands, the syntax to use is my_agent the_action()
. Finally, if it does not return a value, it might still be used but is considering as returning a value of type unknown
(e.g. unknown result <- my_agent the_action(op1, op2);
).
Note that due to the fact that actions are written by modelers, the general functional contract is not respected in that case: actions might perfectly have side effects on their operands (including the agent).
Table of Contents​
Operators by categories​
3D​
box, cone3D, cube, cylinder, hexagon, pyramid, set_z, sphere, teapot,
Arithmetic operators​
-, /, ^, *, +, abs, acos, asin, atan, atan2, ceil, cos, cos_rad, div, even, exp, fact, floor, hypot, is_finite, is_number, ln, log, mod, round, signum, sin, sin_rad, sqrt, tan, tan_rad, tanh, with_precision,
BDI​
add_values, and, eval_when, get_about, get_agent, get_agent_cause, get_belief_op, get_belief_with_name_op, get_beliefs_op, get_beliefs_with_name_op, get_current_intention_op, get_decay, get_desire_op, get_desire_with_name_op, get_desires_op, get_desires_with_name_op, get_dominance, get_familiarity, get_ideal_op, get_ideal_with_name_op, get_ideals_op, get_ideals_with_name_op, get_intensity, get_intention_op, get_intention_with_name_op, get_intentions_op, get_intentions_with_name_op, get_lifetime, get_liking, get_modality, get_obligation_op, get_obligation_with_name_op, get_obligations_op, get_obligations_with_name_op, get_plan_name, get_predicate, get_solidarity, get_strength, get_super_intention, get_trust, get_truth, get_uncertainties_op, get_uncertainties_with_name_op, get_uncertainty_op, get_uncertainty_with_name_op, get_values, has_belief_op, has_belief_with_name_op, has_desire_op, has_desire_with_name_op, has_ideal_op, has_ideal_with_name_op, has_intention_op, has_intention_with_name_op, has_obligation_op, has_obligation_with_name_op, has_uncertainty_op, has_uncertainty_with_name_op, new_emotion, new_mental_state, new_predicate, new_social_link, not, or, set_about, set_agent, set_agent_cause, set_decay, set_dominance, set_familiarity, set_intensity, set_lifetime, set_liking, set_modality, set_predicate, set_solidarity, set_strength, set_trust, set_truth, with_values,
Casting operators​
as, as_int, as_matrix, field_with, font, is, is_skill, list_with, matrix_with, species_of, to_gaml, to_geojson, to_list, with_size, with_style,
Color-related operators​
-, /, *, +, blend, brewer_colors, brewer_palettes, gradient, grayscale, hsb, mean, median, palette, rgb, rnd_color, scale, sum, to_hsb,
Comparison operators​
Containers-related operators​
-, ::, +, accumulate, all_match, among, as_json_string, at, cartesian_product, collect, contains, contains_all, contains_any, contains_key, count, empty, every, first, first_with, get, group_by, in, index_by, inter, interleave, internal_integrated_value, last, last_with, length, max, max_of, mean, mean_of, median, min, min_of, mul, none_matches, one_matches, one_of, product_of, range, remove_duplicates, reverse, shuffle, sort_by, split, split_in, split_using, sum, sum_of, union, variance_of, where, with_max_of, with_min_of,
Date-related operators​
-, !=, +, <, <=, =, >, >=, after, before, between, every, milliseconds_between, minus_days, minus_hours, minus_minutes, minus_months, minus_ms, minus_weeks, minus_years, months_between, plus_days, plus_hours, plus_minutes, plus_months, plus_ms, plus_weeks, plus_years, since, to, until, years_between,
Dates​
Displays​
edge​
EDP-related operators​
Files-related operators​
agent_file, copy_file, crs, csv_file, delete_file, dxf_file, evaluate_sub_model, file_exists, folder, folder_exists, gaml_file, geojson_file, get, gif_file, gml_file, graph6_file, graphdimacs_file, graphdot_file, graphgexf_file, graphgml_file, graphml_file, graphtsplib_file, grid_file, image_file, is_agent, is_csv, is_dxf, is_gaml, is_geojson, is_gif, is_gml, is_graph6, is_graphdimacs, is_graphdot, is_graphgexf, is_graphgml, is_graphml, is_graphtsplib, is_grid, is_image, is_json, is_obj, is_osm, is_pgm, is_property, is_shape, is_simulation, is_svg, is_text, is_threeds, is_xml, json_file, new_folder, obj_file, osm_file, pgm_file, property_file, read, rename_file, shape_file, simulation_file, step_sub_model, svg_file, text_file, threeds_file, unzip, writable, xml_file, zip,
GamaMetaType​
GamaSVGFile​
Graphs-related operators​
add_edge, add_node, adjacency, agent_from_geometry, all_pairs_shortest_path, alpha_index, as_distance_graph, as_edge_graph, as_intersection_graph, as_path, as_spatial_graph, beta_index, betweenness_centrality, biggest_cliques_of, connected_components_of, connectivity_index, contains_edge, contains_vertex, degree_of, directed, edge, edge_between, edge_betweenness, edges, gamma_index, generate_barabasi_albert, generate_complete_graph, generate_random_graph, generate_watts_strogatz, girvan_newman_clustering, grid_cells_to_graph, in_degree_of, in_edges_of, k_spanning_tree_clustering, label_propagation_clustering, layout_circle, layout_force, layout_force_FR, layout_force_FR_indexed, layout_grid, load_shortest_paths, main_connected_component, max_flow_between, maximal_cliques_of, nb_cycles, neighbors_of, node, nodes, out_degree_of, out_edges_of, path_between, paths_between, predecessors_of, remove_node_from, rewire_n, source_of, spatial_graph, strahler, successors_of, sum, target_of, undirected, use_cache, weight_of, with_k_shortest_path_algorithm, with_shortest_path_algorithm, with_weights,
Grid-related operators​
as_4_grid, as_grid, as_hexagonal_grid, cell_at, cells_in, cells_overlapping, field, grid_at, neighbors_of, path_between, points_in, values_in,
ImageOperators​
*, antialiased, blend, blurred, brighter, clipped_with, darker, grayscale, horizontal_flip, image, matrix, rotated_by, sharpened, snapshot, tinted_with, vertical_flip, with_height, with_size, with_width,
Iterator operators​
accumulate, all_match, as_map, collect, count, create_map, first_with, frequency_of, group_by, index_by, last_with, max_of, mean_of, min_of, none_matches, one_matches, product_of, sort_by, sum_of, variance_of, where, where, where, with_max_of, with_min_of,
List-related operators​
all_indexes_of, copy_between, index_of, last_index_of,
Logical operators​
:, !, ?, add_3Dmodel, add_geometry, add_icon, and, or, xor,
Map comparaison operators​
fuzzy_kappa, fuzzy_kappa_sim, kappa, kappa_sim, percent_absolute_deviation,
Map-related operators​
as_map, create_map, index_of, last_index_of,
Matrix-related operators​
-, /, ., *, +, append_horizontally, append_vertically, column_at, columns_list, determinant, eigenvalues, flatten, index_of, inverse, last_index_of, row_at, rows_list, shuffle, trace, transpose,
multicriteria operators​
electre_DM, evidence_theory_DM, fuzzy_choquet_DM, promethee_DM, weighted_means_DM,
Path-related operators​
agent_from_geometry, all_pairs_shortest_path, as_path, load_shortest_paths, max_flow_between, path_between, path_to, paths_between, use_cache,
Pedestrian​
Points-related operators​
-, /, *, +, <, <=, >, >=, add_point, angle_between, any_location_in, centroid, closest_points_with, farthest_point_to, grid_at, norm, points_along, points_at, points_on,
Random operators​
binomial, exp_density, exp_rnd, flip, gamma_density, gamma_rnd, gamma_trunc_rnd, gauss, generate_terrain, lognormal_density, lognormal_rnd, lognormal_trunc_rnd, poisson, rnd, rnd_choice, sample, shuffle, skew_gauss, truncated_gauss, weibull_density, weibull_rnd, weibull_trunc_rnd,
ReverseOperators​
Shape​
arc, box, circle, cone, cone3D, cross, cube, curve, cylinder, ellipse, elliptical_arc, envelope, geometry_collection, hexagon, line, link, plan, polygon, polyhedron, pyramid, rectangle, sphere, square, squircle, teapot, triangle,
Spatial operators​
-, *, +, add_point, agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, angle_between, any_location_in, arc, around, as_4_grid, as_driving_graph, as_grid, as_hexagonal_grid, at_distance, at_location, box, centroid, circle, clean, clean_network, closest_points_with, closest_to, cone, cone3D, convex_hull, covering, covers, cross, crosses, crossing, crs, CRS_transform, cube, curve, cylinder, direction_between, disjoint_from, distance_between, distance_to, ellipse, elliptical_arc, envelope, farthest_point_to, farthest_to, geometry_collection, gini, hexagon, hierarchical_clustering, IDW, inside, inter, intersects, inverse_rotation, k_nearest_neighbors, line, link, masked_by, moran, neighbors_at, neighbors_of, normalized_rotation, overlapping, overlaps, partially_overlapping, partially_overlaps, path_between, path_to, plan, points_along, points_at, points_on, polygon, polyhedron, pyramid, rectangle, rotated_by, rotation_composition, round, scaled_to, set_z, simple_clustering_by_distance, simplification, skeletonize, smooth, sphere, split_at, split_geometry, split_lines, square, squircle, teapot, to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, touches, touching, towards, transformed_by, translated_by, triangle, triangulate, union, using, voronoi, with_precision, without_holes,
Spatial properties operators​
covers, crosses, intersects, partially_overlaps, touches,
Spatial queries operators​
agent_closest_to, agent_farthest_to, agents_at_distance, agents_covering, agents_crossing, agents_inside, agents_overlapping, agents_partially_overlapping, agents_touching, at_distance, closest_to, covering, crossing, farthest_to, inside, neighbors_at, neighbors_of, overlapping, partially_overlapping, touching,
Spatial relations operators​
direction_between, distance_between, distance_to, path_between, path_to, towards,
Spatial statistical operators​
hierarchical_clustering, k_nearest_neighbors, simple_clustering_by_distance,
Spatial transformations operators​
-, *, +, as_4_grid, as_grid, as_hexagonal_grid, at_location, clean, clean_network, convex_hull, CRS_transform, inverse_rotation, normalized_rotation, rotated_by, rotation_composition, scaled_to, simplification, skeletonize, smooth, split_geometry, split_lines, to_GAMA_CRS, to_rectangles, to_segments, to_squares, to_sub_geometries, transformed_by, translated_by, triangulate, voronoi, with_precision, without_holes,
Species-related operators​
index_of, last_index_of, of_generic_species, of_species,
Statistical operators​
auto_correlation, beta, binomial_coeff, binomial_complemented, binomial_sum, build, chi_square, chi_square_complemented, correlation, covariance, dbscan, distribution_of, distribution2d_of, dtw, durbin_watson, frequency_of, gamma, gamma_distribution, gamma_distribution_complemented, geometric_mean, gini, harmonic_mean, hierarchical_clustering, incomplete_beta, incomplete_gamma, incomplete_gamma_complement, k_nearest_neighbors, kmeans, kurtosis, log_gamma, max, mean, mean_deviation, median, min, moment, moran, morrisAnalysis, mul, normal_area, normal_density, normal_inverse, predict, pValue_for_fStat, pValue_for_tStat, quantile, quantile_inverse, rank_interpolated, residuals, rms, rSquare, simple_clustering_by_distance, skewness, sobolAnalysis, split, split_in, split_using, standard_deviation, student_area, student_t_inverse, sum, t_test, variance,
Strings-related operators​
+, <, <=, >, >=, at, capitalize, char, contains, contains_all, contains_any, copy_between, date, empty, first, in, indented_by, index_of, is_number, last, last_index_of, length, lower_case, regex_matches, replace, replace_regex, reverse, sample, shuffle, split_with, string, upper_case,
SubModel​
System​
., choose, command, copy, copy_from_clipboard, copy_to_clipboard, copy_to_clipboard, dead, enter, eval_gaml, every, is_error, is_reachable, is_warning, play_sound, user_confirm, user_input_dialog, wizard, wizard_page,
Time-related operators​
Types-related operators​
action, agent, attributes, BDIPlan, bool, container, conversation, directory, emotion, file, float, gaml_type, geometry, graph, int, kml, list, map, matrix, mental_state, message, Norm, pair, path, point, predicate, regression, rgb, Sanction, skill, social_link, species, topology, unknown,
User control operators​
choose, enter, user_confirm, user_input_dialog, wizard, wizard_page,
Operators​
sample
​
Possible uses:​
sample
(any expression
) --->string
string
sample
any expression
--->string
sample
(string
,any expression
) --->string
sample
(list
,int
,bool
) --->list
sample
(list
,int
,bool
,list
) --->list
Result:​
takes a sample of the specified size from the elements of x using either with or without replacement takes a sample of the specified size from the elements of x using either with or without replacement with given weights
Examples:​
list var0 <- sample([2,10,1],2,false); // var0 equals [10,1]
list var1 <- sample([2,10,1],2,false,[0.1,0.7,0.2]); // var1 equals [10,2]
Sanction
​
Possible uses:​
Sanction
(any
) --->Sanction
Result:​
casts the operand in a Sanction object.
scale
​
Possible uses:​
scale
(map<rgb,unknown>
) --->map<float,rgb>
scale
(map<rgb,unknown>
,float
,float
) --->map<float,rgb>
Result:​
Similar to gradient(map<rgb, float>) but reorders the colors based on their weight and does not normalize them, so as to effectively represent a color scale (i.e. a correspondance between a range of value and a color that implicitly begins with the lowest value)For instance scale([#red::10, #green::0, #blue::30]) would produce the reverse map and associate #green to the interval 0-10, #red to 10-30, and #blue above 30. The main difference in usages is that, for instance in the definition of a mesh to display, a gradient will produce interpolated colors to accomodate for the intermediary values, while a scale will stick to the colors defined. Expects a gradient, i.e. a map<rgb,float>, where values represent the different stops of the colors. First normalizes the passed gradient, and then applies the resulting weights to the interval represented by min and max, so as to return a scale (i.e. absolute values instead of the stops
See also: gradient,
scaled_by
​
Same signification as *
scaled_to
​
Possible uses:​
geometry
scaled_to
point
--->geometry
scaled_to
(geometry
,point
) --->geometry
Result:​
allows to restrict the size of a geometry so that it fits in the envelope {width, height, depth} defined by the second operand
Examples:​
geometry var0 <- shape scaled_to {10,10}; // var0 equals a geometry corresponding to the geometry of the agent applying the operator scaled so that it fits a square of 10x10
select
​
Same signification as where
serialize
​
Possible uses:​
serialize
(agent
) --->string
serialize
(unknown
) --->string
agent
serialize
string
--->string
serialize
(agent
,string
) --->string
serialize
(agent
,string
,bool
) --->string
Result:​
Serializes any agent/simulation into a string, using the format passed in parameter (either 'binary', 'xml' or 'json'). The result is not compressed.The result of this operator can be then used in the from:
facet of restore
or create
statements
Serializes any agent/simulation into a string, using the default 'binary' format. The result is not compressed.The result of this operator can be then used in the from:
facet of restore
or create
statements
Serializes any item into a string, using the default 'xml' format. Agents and simulations are serialized using the default 'binary' format when not specified
Serializes any agent/simulation into a string, using the format passed in parameter (either 'binary', 'xml' or 'json'). The result is compressed if the last parameter is true.The result of this operator can be then used in the from:
facet of restore
or create
statements
See also: , deserialize,
set_about
​
Possible uses:​
emotion
set_about
predicate
--->emotion
set_about
(emotion
,predicate
) --->emotion
Result:​
change the about value of the given emotion
Examples:​
emotion set_about predicate1
set_agent
​
Possible uses:​
social_link
set_agent
agent
--->social_link
set_agent
(social_link
,agent
) --->social_link
Result:​
change the agent value of the given social link
Examples:​
social_link set_agent agentA
set_agent_cause
​
Possible uses:​
predicate
set_agent_cause
agent
--->predicate
set_agent_cause
(predicate
,agent
) --->predicate
emotion
set_agent_cause
agent
--->emotion
set_agent_cause
(emotion
,agent
) --->emotion
Result:​
change the agentCause value of the given predicate change the agentCause value of the given emotion
Examples:​
predicate set_agent_cause agentA
new_emotion set_agent_cause agentA
set_decay
​
Possible uses:​
emotion
set_decay
float
--->emotion
set_decay
(emotion
,float
) --->emotion
Result:​
change the decay value of the given emotion
Examples:​
emotion set_decay 12
set_dominance
​
Possible uses:​
social_link
set_dominance
float
--->social_link
set_dominance
(social_link
,float
) --->social_link
Result:​
change the dominance value of the given social link
Examples:​
social_link set_dominance 0.4
set_familiarity
​
Possible uses:​
social_link
set_familiarity
float
--->social_link
set_familiarity
(social_link
,float
) --->social_link
Result:​
change the familiarity value of the given social link
Examples:​
social_link set_familiarity 0.4
set_intensity
​
Possible uses:​
emotion
set_intensity
float
--->emotion
set_intensity
(emotion
,float
) --->emotion
Result:​
change the intensity value of the given emotion
Examples:​
emotion set_intensity 12
set_lifetime
​
Possible uses:​
mental_state
set_lifetime
int
--->mental_state
set_lifetime
(mental_state
,int
) --->mental_state
Result:​
change the lifetime value of the given mental state
Examples:​
mental state set_lifetime 1
set_liking
​
Possible uses:​
social_link
set_liking
float
--->social_link
set_liking
(social_link
,float
) --->social_link
Result:​
change the liking value of the given social link
Examples:​
social_link set_liking 0.4
set_modality
​
Possible uses:​
mental_state
set_modality
string
--->mental_state
set_modality
(mental_state
,string
) --->mental_state
Result:​
change the modality value of the given mental state
Examples:​
mental state set_modality belief
set_predicate
​
Possible uses:​
mental_state
set_predicate
predicate
--->mental_state
set_predicate
(mental_state
,predicate
) --->mental_state
Result:​
change the predicate value of the given mental state
Examples:​
mental state set_predicate pred1
set_solidarity
​
Possible uses:​
social_link
set_solidarity
float
--->social_link
set_solidarity
(social_link
,float
) --->social_link
Result:​
change the solidarity value of the given social link
Examples:​
social_link set_solidarity 0.4
set_strength
​
Possible uses:​
mental_state
set_strength
float
--->mental_state
set_strength
(mental_state
,float
) --->mental_state
Result:​
change the strength value of the given mental state
Examples:​
mental state set_strength 1.0
set_trust
​
Possible uses:​
social_link
set_trust
float
--->social_link
set_trust
(social_link
,float
) --->social_link
Result:​
change the trust value of the given social link
Examples:​
social_link set_familiarity 0.4
set_truth
​
Possible uses:​
predicate
set_truth
bool
--->predicate
set_truth
(predicate
,bool
) --->predicate
Result:​
change the is_true value of the given predicate
Examples:​
predicate set_truth false
set_z
​
Possible uses:​
geometry
set_z
container<unknown,float>
--->geometry
set_z
(geometry
,container<unknown,float>
) --->geometry
set_z
(geometry
,int
,float
) --->geometry
Result:​
Sets the z ordinate of the n-th point of a geometry to the value provided by the third argument
Examples:​
triangle(3) set_z [5,10,14]
set_z (triangle(3), 1, 3.0)
shape_file
​
Possible uses:​
shape_file
(string
) --->file
string
shape_file
int
--->file
shape_file
(string
,int
) --->file
string
shape_file
string
--->file
shape_file
(string
,string
) --->file
string
shape_file
bool
--->file
shape_file
(string
,bool
) --->file
shape_file
(string
,int
,bool
) --->file
shape_file
(string
,string
,bool
) --->file
Result:​
Constructs a file of type shape. Allowed extensions are limited to shp, SHP
Special cases:​
- shape_file(string): This file constructor allows to read a shapefile (.shp) file
file f <- shape_file("file.shp");
- shape_file(string,int): This file constructor allows to read a shapefile (.shp) file and specifying the coordinates system code, as an int (epsg code)
file f <- shape_file("file.shp", "32648");
- shape_file(string,string): This file constructor allows to read a shapefile (.shp) file and specifying the coordinates system code (epg,...,), as a string
file f <- shape_file("file.shp", "EPSG:32648");
- shape_file(string,bool): This file constructor allows to read a shapefile (.shp) file and take a potential z value (not taken in account by default)
file f <- shape_file("file.shp", true);
- shape_file(string,int,bool): This file constructor allows to read a shapefile (.shp) file and specifying the coordinates system code, as an int (epsg code) and take a potential z value (not taken in account by default)
file f <- shape_file("file.shp", "32648", true);
- shape_file(string,string,bool): This file constructor allows to read a shapefile (.shp) file and specifying the coordinates system code (epg,...,), as a string and take a potential z value (not taken in account by default)
file f <- shape_file("file.shp", "EPSG:32648",true);
See also: is_shape,
sharpened
​
Possible uses:​
sharpened
(image
) --->image
Result:​
Application of a sharpening filter to the image passed in parameter. This operation can be applied multiple times. The original image is left untouched
shuffle
​
Possible uses:​
shuffle
(matrix
) --->matrix
shuffle
(container
) --->list
shuffle
(string
) --->string
Result:​
The elements of the operand in random order.
Special cases:​
- if the operand is empty, returns an empty list (or string, matrix)
Examples:​
matrix var0 <- shuffle (matrix([["c11","c12","c13"],["c21","c22","c23"]])); // var0 equals matrix([["c12","c21","c11"],["c13","c22","c23"]]) (for example)
list var1 <- shuffle ([12, 13, 14]); // var1 equals [14,12,13] (for example)
string var2 <- shuffle ('abc'); // var2 equals 'bac' (for example)
See also: reverse,
signum
​
Possible uses:​
signum
(int
) --->int
signum
(float
) --->int
Result:​
Returns -1 if the argument is negative, +1 if it is positive, 0 if it is equal to zero or not a number Returns -1 if the argument is negative, +1 if it is positive, 0 if it is equal to zero or not a number
Examples:​
int var0 <- signum(-12); // var0 equals -1
int var1 <- signum(14); // var1 equals 1
int var2 <- signum(0); // var2 equals 0
int var3 <- signum(-12.8); // var3 equals -1
int var4 <- signum(14.5); // var4 equals 1
int var5 <- signum(0.0); // var5 equals 0
simple_clustering_by_distance
​
Possible uses:​
container<unknown,agent>
simple_clustering_by_distance
float
--->list<list<agent>>
simple_clustering_by_distance
(container<unknown,agent>
,float
) --->list<list<agent>>
Result:​
A list of agent groups clustered by distance considering a distance min between two groups.
Examples:​
list<list<agent>> var0 <- [ag1, ag2, ag3, ag4, ag5] simpleClusteringByDistance 20.0; // var0 equals for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]
See also: hierarchical_clustering,
simple_clustering_by_envelope_distance
​
Same signification as simple_clustering_by_distance
simplification
​
Possible uses:​
geometry
simplification
float
--->geometry
simplification
(geometry
,float
) --->geometry
Result:​
A geometry corresponding to the simplification of the operand (geometry, agent, point) considering a tolerance distance.
Comment:​
The algorithm used for the simplification is Douglas-Peucker
Examples:​
geometry var0 <- self simplification 0.1; // var0 equals the geometry resulting from the application of the Douglas-Peuker algorithm on the geometry of the agent applying the operator with a tolerance distance of 0.1.
simulation_file
​
Possible uses:​
simulation_file
(string
) --->file
Result:​
Constructs a file of type simulation. Allowed extensions are limited to gsim, simulation
Special cases:​
- simulation_file(string): File containing a saved simulation. Three internal formats are supported: json, xml and java binary serialisation protocol
See also: is_simulation,