Primer of the GAMA 1.9.3 modeling language

Structure of a model/program

25/03/2024

Program myFirstModel

Defines all global variables,
model initialization and global behaviors.

species mySpecies|
Defines variables, behaviors and aspects
of agents of the species.

experiment expName

Defines the way the model will be executed

model myFirstModel

global {
/I global variables declaration
/I initialization of the model
/I global behaviors

}

species mySpecies1 {

}

experiment expName {

/[attributes, initialization, behaviors and aspects of a species

/I Defines the way the model is executed, the parameters and the outputs.

Includes the type of the execution, }
which global parameters can be modified,
and what will be displayed during simulation
Comments

Block comments

The comment runs until the closing symbol below.
*/

/* A block comment starts with the an opening symbol.

Inline comments

/[This is an inline comment.
/I The /] symbol have to be repeated before each line.

Use of an external model

Use a model (i.e. its species and global variables
and behaviors) defined in another file.

/I this should be after the model statement
import

Primitive types

Integer number int
#value between -2147483648 and 2147483647
Real number float
absolute value between 4.9*107%** and 1.8*10°"
String string
explicit value: “double quotes” or ‘simples quotes’
Boolean value bool
2 values: true, false
Other types
pair #with the two elements of undefined types pair
pair #with two elements of types typel and type2 | pair<type1, type2>
#explicit value using :: symbol: e.g. 1::”one”
color rgb
#explicit value: rgb(255,0,0) for red. (3 components:
Red, Green, Blue)
point point
#explicit value: {1.0, 3} or {1.0, 3, 6}.
#Internal representation with 3 coordinates.
https://gama-platform.org/ GAMA Team 1

Primer of the GAML 1.9.3 modelling language

Variable or constant declaration, affectation

Declaration of a global variable or an attribute
Global variables and species attributes can be
declared with or without initial value.

Declaration of a local variable

explicit declaration of the type

(if the type of the affected value is different, this value
is automatically casted to the declared type)

Declaration of a global variable or an attribute
with a dynamic value
value computed at each simulation step

value computed each time the variable is used.

Declaration of a global variable or an attribute
with additional options

a variable with a minimum and maximum value (if the
variable is assigned with a value greater than the max,
it is set to the maximum value)

a variable with only some possible values.

/I Global variables or species attributes
int an_int;
string a_string <- ;

/I Local variables
float a_float <- 10.0;

/I Global variables or species attributes with dynamic value
/l'inc_int is incremented by 1 at each simulation step
int inc_int <- 0 update: inc_int + 1;

/l random_int has a new random value each time it is used:
int random_int -> { rnd(100) };

/[a_proba can only take value between 0.0 and 1.0 with a step of 0.1
float a_proba <- 0.5 min: 0.0 max: 1.0 step: 0.1;

/I a_str can only take 3 values “blue”, “red”, “green”

string a_str <- among: [, ,

I3

Definition of a constant

float pi <- 3.14 const: true;

Affectation of a value to a variable

Variable ~ value or computed expression

/I Affectation of a value to an existing variable
an_int <- 0;

Display variables

Display ("Text: ", Expression)

Display Expression :- Expression Value

/I Expression will be implicitly casted to a string
/I the + symbol is the string concatenation operator
write + Expression ;

write sample(Expression);

https://gama-platform.org/

GAMA Team

25/03/2024

Primer of the GAMA 1.9.3 modeling language

25/03/2024

Conditionals

If Condition] then
actions

If Condition] then
| action1

Else
|ither actions

If Condition] then
| action1
Else If Condition2 then

composition of Boolean expressions

if (expressionBoolean = true) {
/I block of statements
}

if (expressionBoolean = true) {
/I block 1 of statements
}else {

}

/I block 2 of statements

if (expressionBoolean = true) {
/I block 1 of statements
} else if (expressionBoolean2 != false) {
/I block 2 of statements
}else {
/I block 3 of statements
}
/I equal: = ; not equal: != (e.g. (var1 |=3))
/I Comparison: <, <=, >, >= (e.g. (var2 >=5.0))
/l'logic operators : not (or!), and, or (e.g. (cond1 and not(cond2)))

Conditional affectation
affectation depending of the condition value (if true,
affects the value before the : symbol)

string s <- (expressBoolean = true) ? : ;

Switch statement is a more advanced conditional. It
be used with any type of data.

switch expression

match an_expression
actions

match_one a list expression
actions

match_between a_list_expression

|_actions

match_regex a string_expression

|_actions

default

I_actions

switch res {
/I match to test the equality
match 0 {

}

/I match_between for a test on a range of numerical value
match_between [-#infinity,0] {

}

/I match_one for at least one equality
match_one [1,2,3,4,5] {

}

default {
} }
switch {

/I match to a regular expression. Note the break statement, making the switch
interrupted if the match_regex “[A-Z]” is fulfilled.
match_regex "[A-Z]" {

All the match and default lines are tested, until Lv:;fk; ’
reaching a break statement (break or return) }
default {
write ;
}
}
https://gama-platform.org/ GAMA Team 3

Primer of the GAML 1.9.3 modelling language

25/03/2024

For each element of a container Do
actions

the variable containing each element does not need to
be declared before this loop

Loops
Repeat n times loop times: 10 {
actions } write ;
) loop i from: 1 to: 10 step: 1 {
For index from 0 to n Do write +i;
B:tions }
the index does not need to be declared before this loop int <- 1:
. . loop while: (j <= 10) {
While Condition Repeat write +i;
actions j<-j+ 1

list<int> list_int <- [1,2,3,4,5,6,7,8,9,10];
loop i over: list_int {

write +1i;
}

For each agent of a species or a set of agents Do
actions executed in the context of the agent

#in the ask, self keyword refers to the current agent
(i.e. each agent of the species parameter of the ask) and
myself refers to the agent calling the ask statement.

ask mySpecies?2 {
/] statements

ask list_agent {
/] statements

}

Declaration of a procedure / an action

Procedures and functions are very similar in their
definition. The only difference is that a function has the
returned type (instead of the keyword action) and it
returns a value.

Procedure ProcedureName
actions

Procedure ProcedureName (pdl, pd2)
actions

action myAction {
write ;
}

action myActionWithParam(int int_param,
string my_string <-) {
write my_string + int_param;

}

Call of a

procedure / an action

Call ProcedureName

Call ProcedureName (pal, pa2, pa3)

if a parameter has a default value, it can be omitted
when calling the action. It will thus have the default
value.

do myAction();
do myActionWithParam(3,);

ask an_agent {

do myActionWithParam(3); // the second parameter has its default value

if the procedure has been defined in another species, } do proc(3);
the current agent has to ask an agent of this species to
call the procedure.
https://gama-platform.org/ GAMA Team 4

Primer of the GAMA 1.9.3 modeling language

25/03/2024

Declaration of a function

Function FunctionName : type
actions
return value
Function FunctionName (pd1, pd2) : type
actions
return value

int myFunction {
return 1+1;
}

int myFunctionWithParam(int i, int j <- 0){
return i+ j;
}

Call of a function

Variable — FunctionName ()

Variable — FunctionName (pal, pa2)

#if a parameter has a default value, it can be omitted
when calling the action. It will thus have the default
value.

if the function has been defined in another species, the
current agent has to ask an agent of this species to call
the function.

/ the current agent calls the function
int i <- myFunction();
int j <- self. myFunction();

/I The current agent calls a function with parameters
int | <- myFunctionWithParam(1);
int m <- myFunctionWithParam(1,5);

/I another agent calls a function with parameters
int n <- an_agent.myFunctionWithParam(1,5);

List,

map and matrix

Declaration and explicit initialization of list,
map and matrix variables.

list<int> list_int <- [1,2,3,4,5];
map<int,string> map_int <- map([1::
matrix<int> m <- matrix([[1,2],[3,4]]);

Incremental creation of lists and maps

Replacement of an element from list or matrix.
In map, we can replace the value associated to a key.

// Add 7 at the end of the list

add 7 to: list_int;

/I Add the pair 6::"six" to the map
add at: 6 to: map_int;

put 8 at: 5 in: list_int;
put 7 at: {0,0} in: m;

Access to elements

List access using the index, map access using the key,
matrix access using coordinates in the matrix.

the first element of a list has an index of 0.

/I Access of an list element out of bounds will throw an error, Access to the value
associated to a non-existing key will return nil

list_int[1]

map_int[2]

m[{1,1}]

Loop over elements of a list, map. matrix

Loop over maps have to be done on keys, values or

pairs list

/I'loop over values of a list
loop i over: list_int { }

/I'loop over values of the map (similar with keys and pairs)
loop v over: map_int.values{ }

https://gama-platform.org/

GAMA Team

Primer of the GAML 1.9.3 modelling language

Definition of a species

25/03/2024

Species SpeciesName
Definition of the set of attributes

init

litatements

behavior behaviorName

Iitatements

aspect aspectName
Iitatements to draw the agents

built-in attributes: name, shape, location...

species mySpecies1 {
ints1_int;
float energy <- 10.0;
init {
/I statements dedicated to the initialization of agents

}

reflex reflex_name {
/I set of statements
}

aspect square {
draw square(10);
draw circle(5) color: #red ;
}
!

Use of an architecture
by default, species use the reflex architecture

architecture.

Agents can still use reflex behaviors, even with another }

species mySpeciesArchi control: fsm {

Use of skills
by default, no skill is associated with a species.

A skill provides additional attributes and actions.

species mySpecies3 skills: [moving, communicating] {

}

Inheritance
No multiple inheritance is allowed.

species mySpecies2 parent: mySpecies1{ }

/I mySpecies2 gets all attributes and behaviors from mySpecies1

Creation of agents

Creation of N agents of a species

Agent creation is often done in the global init.
Creation of N agents of a species
l_Initialization of the agents

create mySpecies1 number: 10;

create mySpecies1 number: 20 {
an_int <- 0;
}

Creation from (shapefile or csv_file) data
Objects of the file have an id attribute.

create mySpecies1 from: a_shp_file
with: [an_int::int(read('id"))];

https://gama-platform.org/

GAMA Team

Primer of the GAMA 1.9.3 modeling language

25/03/2024

Definition of an experiment

experiment expName type: gui
Set of parameters

Outputs definition
display
Ij)ecies, grid, agents

ispla
chart

Bata

#As many displays as needed can be created (charts or
agent display). Each represents a point of view on the
simulation.

experiment expName type: batch
Set of parameters

experiment expeName type: gui {
parameter var: an_int <- 2
min: 0 max: 1000 step: 1 category: ;
output {
display display_name {
species mySpecies2 aspect: square;
species mySpecies1;

}
display other_display_name {
chart type: series {
data value: a_float;
}
}

}
}
/I repeat defines the number of replications for the same parameter values
/] keep_seed means whether the same random generator seed is used at the first
replication for each parameter values
experiment expeNameBatch type: batch repeat: 2

keep_seed: true until: (booleanExpression) {
parameter var: an_int <- 2 min: 0 max: 1000 step: 1 ;
method exhaustive maximize: an_indicator ;

permanent {
display other_display_name {

Exploration method chart type: series {
data value: a_float;
Qutputs definition }
display } }
chart)
|iata
#In the batch experiment, charts can be used to plot the
evolution over the simulations of a global indicator.
Scheduler

Agents of a species are executed at each step, by
default in their creation order.
Default schedule

Random schedule

No schedule
The agents are not scheduled (i.e. not executed). It
could be useful when defining passive agents.

Schedule manager

The schedule of each species is centralised and
delegated to a manager agent. (All the species need to

be unscheduled).

/l Equivalent to species schedul_def { }
species schedul_def schedules: schedul_def

{}

species schedul_rnd schedules: shuffle(schedul_rnd)

{}

species no_schedul schedules: []

{}

species spec1 schedules: []

{}

species spec2 schedules: []

{}

/I The schedul_manager agent will first schedule agents of spec2 species and then
the ones from spec1 (in a random order)
species schedul_manager schedules: spec2 + shuffle(spec1) {

{}

https://gama-platform.org/

GAMA Team 7

Primer of the GAML 1.9.3 modelling language 25/03/2024
Grid and field

grid allows the modeler to define a specific kind of /I Definition of a grid with 10x10 cells, and where the number of neighbors is
species: agents representing the cells of the grid cannot | specified (can be 4, 6 or 8 neighbors). When it | s 6, cells have a hexagon shape,
move, have a default square shape, and additional with a given orientation

attributes, such as color (used for the default display of | 91id cell height: 10 width: 10)

the grid), grid_x, grid_y (coordinates of the cell in the neighbors: 6 horizontal_orientation: true {

grid), neighbors, grid_value.

grid SpeciesName [additional attributes] !
Definition of the set of attributes
/IGrid agents can be initialized using the tabular file (e.g. a DEM file as an asc file):
init the width and height of the grid are directly read from the file. The values of the asc
T file are stored in the grid_value attribute of the cells.
Iitatements grid cell file: file('../includes/hab10.asc’) {
init {
color <- grid_value = 0.0 ? #black :
behavior behaviorName (grid_value = 1.0 ? #green :
Iitatements #;yellow);
}
aspect aspectName /I Various facets have been introduced to optimize the use of grids (in memory
statements to draw the agents and execution time): e.g.:
grid cell file: dem_file neighbors: 8
L frequency: 0

use_regular_agents: false use_individual_shapes: false
use_neighbors_cache: false
schedules: [] parallel: parallel {

grid can thus be initialised from a tabular datafile
(e.g. asc, tiff). The value in the datafile will thus be
stored in the built-in attribute grid_value.

}
field datatype has been introduced to store and to /' Load the data in a field
manipulate tabular datafiles (e.g. DEM asc file), field field_display <- field(grid_file()&

without creating agents.

field has a built-in attribute bands (to read several /I data in field can be updated))
dimensions data) field var_field <- field(field_display - mean(field_display));

/I Fields can be displayed using the mesh statement
experiment Field_view type:gui{

field can be displayed using the specific mesh output {
Statement display "field through mesh" type:opengl {
experiment expName type: gui mesh field_display grayscale:true scale: 0.05
triangulation: true smooth: true
Q]!tp!!ts definition } refresh: false;
display “foo” type: °Pengl, display "rgb field through mesh" type:opengl {
|ine5h a_field var [additional facets] mesh field_display color: field_display.bands
scale: 0.0 refresh: false;
}
L }
}

https://gama-platform.org/ GAMA Team 8

Primer of the GAMA 1.9.3 modeling language 25/03/2024

Multi-level species

The Multi-level architecture in GAMA is based on the
idea that some agents can aggregate some agents, to
provide a higher level of agents in the model. To this
purpose the higher-level agent can capture lower-level
agents (aggregation) and release them (desegregation)

Technically, agents of a species specl can be
aggregated in agents of the low_level_spec species (that
inherits from specl) defined inside the high_level _spec
species

The environment of low_level spec agents is the
shape of the high_level spec agent that captured them.
The release should thus specify in which environment
the agents are released (in general in the global world).

/I Species pedestrian which will be captured by the corridor agent.
species pedestrian {

point target_location;

rgb color;

}

/IAgents of the species corridor will be the high-level agents.
species corridor {
/ISubspecies for the multi-level architectures : captured_pedestrian
agents are the low-level agents
species captured_pedestrian parent: pedestrian
schedules: [] {
float release_time;

}

/I Reflex to capture pedestrians if the condition is true
reflex aggregate when: capture_pedestrians {
capture (pedestrian where (a_condition))
as: captured_pedestrian {
release_time <-rnd(10.0);
}

}

/IReflex to release pedestrians which have already passed enough time in the
corridor
reflex disaggregate {
list tobe_released_pedestrians <- captured_pedestrian where (time
>= each.release_time);
if |(empty(tobe_released_pedestrians)) {
release tobe_released_pedestrians
as: pedestrian in: world {
location <- any_location_in(world);
}

https://gama-platform.org/

GAMA Team 9

