
GAMA platform: exercice 1 - Schelling

Alexis Drogoul (a, b), Benoit Gaudou (c), Patrick Taillandier (d)

(a) UMI 209 UMMISCO, IRD / UPMC

(b) JEAI DREAM, IRD / Université de Can Tho

(c) UMR 5505 IRIT, Université de Toulouse 1 / CNRS
(d) UMR 6266 IDEES, Université de Rouen / CNRS

MISS ABMS 2014

! In 1969, Schelling introduced a model of
segregation in which individuals of two
different colors, positioned on a grid
(abstract representation of a district),
choose where to live based on a
preferred percentage of neighbors of the
same color.

➡ A grid of cells, inhabited by entities of two
different colors.

➡ Each entity is able to compute the
number of neighbors of different color it
has around

➡ At each time step, if the actual
percentage computed is higher than its
preferred percentage, it moves to another
free cell, chosen randomly.

Introdution: the schelling model 2

! Exercice 1: In the world agent defines 3
new variables :

➡ density: type: float, init value: 0.9
➡ preference: type: float, init value: 0.7
➡ distance: type: int, init value: 5

Step 1: global variables 3

! Exercice 2: define inside the world a new
grid called « house » :

➡ with 30 rows and 30 columns,
➡ with a Moore neighborhood(8)
➡ with a variable called « is_empty » with

the init value true

! Exercice 3: in the display « my_display »
add a new layer called « Grid », in which
the grid « house » is displayed with black
lines

Step 2: house grid 4

! Exercice 4: define inside the world a new species
called « people » with 3 variables:

➡ my_house: type: house

➡ color: type: rgb, init value: flip(0.5) ? #red: #yellow

➡ is_happy: type: bool

Step 3: people species 5

The symbol # allows

to define a color

Probability 0.5 to be red
and 0.5 to be yellow

The flip(proba) operator is used to test a

probability: returns true with a probability

proba (false otherwise)

The condition ? val1 : val2 operator returns

val1 if condition is true, val2 otherwise

! Exercice 5: Add an aspect to the people species
called « default »:

➡ Add a layer called « People » that draws a circle of
radius 1.0 with for color the « color » expression (i.e.
the color variable of the people agents).

! Exercice 6: in the display « my_display » add a new
layer called « People », in which the species
« people » is displayed with aspect « default » (the
one previously defined)

Step 4: people species display 6

Note: in a display or a aspect, the
display order of the layer follows

the layer definition

couche1
couche2

couche3

! Exercice 7: In the init section of the world agent:
➡ compute the number of people agents to create (nb

of house cells x density) :
int nb_people <- length(house) * density;

➡ for nb_people house cells (chosen randomly),
create a people agent that will have for house
(my_house variable) this house, for location, the
house location and set the is_empty variable of the
house to false:

loop h over: nb_people among shuffle(house) {
create people {
 my_house <- h;

location <- h.location;
h.is_empty<- false;

}

Step 5: people initialization 7

All GAMA agents are provided with some built-in variables :
• name (string)
• shape (geometry)
• location (point) : centroid of its shape

The shuffle(list)
operator allow to

shuffle a list

The nb among list operator
allow to randomly draw nb

element from a list

The <- statement allow to
modify the value of a variable

The a_agent.variable symbol can be used
to access a variable of an agent

The length(list) operator returns
the nb of elements of a list

The loop var over: list {…}
statement allows to applied a

sequence of statement over the
element of a list: var represents

each element of the list

The create a_species {…}
statement allows to create a
agent of species a_species

! Exercice 8: Add a reflex to the people species called
« compute_happiness »:

➡ compute the list of people agents that are located within the
distance distance to the agent (its neighborhood):

list<people> neigbours_pp <- people at_distance distance;

➡ compute the number of people agent in the neighborhood:
int nb_neighbours <- length(neigbours_pp);

➡ compute the number of people agents in the neighborhood
that have a different color:

int nb_neighbours_diff<- neigbours_pp count (each.color != color);

➡ compute the is_happy variable: the people agent is happy
there is no one in its neighborhood or if the rate of people
with a different color is lower than its preference:

is_happy <- (nb_neighbours = 0) or ((nb_neighbours_diff /
nb_neighbours) < preference) ;

Step 6: people compute happiness reflex

The list count condition operator allows to compute the
number of elements of the list that verifies the condition

(the « each » keyword represents each element of the list)

The a_species at_distance distance operator allows
to returns the list of agents of species a_species at
a distance equal or inferior to distance to the agent

! Exercice 9: Add a reflex to the people species called « move »:
➡ add a condition (Condition) to the reflex activation: the reflex is

activated only if the agent is not happy:
not is_happy

➡ Concerning the reflex gamp code, first, set the variable
is_empty of my_house to true (because the agent is leaving it):

my_house.is_empty <- true;

➡ then, set the variable my_house to one empty house:
my_house <- one_of (house where each.is_empty);

➡ then, set the variable location to the my_house location:
location <- my_house.location;

➡ finally, set the variable is_empty of my_house to false (because
the agent is arriving in the house):

my_house.is_empty <- false;

Step 7: people move reflex

The list where condition operator allows to compute
the sub-list of the list that verifies the condition (the

« each » keyword represents each element of the list)

http://each.is

Conclusion of model 1: it is already finished!

Model2: schelling GIS

Same model (almost), but with GIS data

! Exercice 1: In the world agent defines 3 new variables :
➡ density: type: float, init value: 0.9
➡ preference: type: float, init value: 0.5
➡ distance: type: int, init value: 100

Step 1: global variables 12

! Exercice 2: In the my_GUI_xp experiment defines 3 new parameters :
➡ density: text: density
➡ preference: text: preference
➡ distance: text: distance

! Exercice 3: define inside the world a new
species called « house » :

➡ with 1 variable : capacity : type: int (nb of
people agents that can come in the
house)

Step 2: house agent 13

! Exercice 4: Add an aspect to the house species
called « default »:

➡ Add a layer called « geom » that draws the geometry
of the agent with a gray color: choose for Shape type
expression and then, in the Expression field write
shape (the shape variable is a built-in variable that
represents the geometry of the agent).

! Exercice 5: in the display « my_display » add a new
layer called « House », in which the species
« house » is displayed with aspect « default » (the
one previously defined). set refresh to false (the layer
does not need to be redraw every simulation step).
Set the display type to opengl (to be able to display
3D)

Step 3: house species display 14

! Exercice 6: In the init section of the world agent:
➡ create house agents from the shapefile

buildings.shp that is located in the folder includes
➡ For each house agent, set its capacity as 1 + its

area/ 1000
create house from: "../includes/buildings.shp" {

capacity <- 1 + shape.area / 1000;
}

Step 4: house initialization 15
It is possible to directly create

agents from a shapefile (or from
an OSM file) by using the from

facet with the create statement:
each object of the GIS file will

become an agents

Note that the attribute of the GIS

object can be read as well

A geometry has also variables
that can be access by

my_geom.variable: area,
perimeter, points…

the default folder to
consider a file is the

diagram/model folder.
To go up a level, use

« ../ »

! Exercice 7: In the bounds section of the world
agent:

➡ choose the « file » type to define the bounds size
of the world

➡ As path, choose the buildings.shp shapefile that is
located in the folder includes

Step 5: definition of the shape of the global 16

Environment

Computation of the
world geometry from
the envelope of the
building shapefile

! Exercice 8: define inside the world a new species
called « people » with 3 variables:

➡ my_house: type: house

➡ color: type: rgb, init value: probability of 0.5 to be
red and yellow

➡ is_happy: type: bool

Step 6: people species 17

! Exercice 9: Add an aspect to the people species
called « cube »:

➡ Add a layer called « People » that draws a cube of
side size 20 with for color the « color » expression
(i.e. the color variable of the people agents).

! Exercice 10: in the display « my_display » add a new
layer called « People », in which the species
« people » is displayed with aspect « cube » (the one
previously defined)

Step 7: people species display 18

! Exercice 11: Add an action (capability) to the
house species called « go_out »:

➡ The action increments by one the capacity of the
building (one place more):

capacity <- capacity + 1;

Step 8: go_out house action 19

! Exercice 12: Add an action to the house species
called « go_in »:

➡ Add an argument (input of the action) to this action
called « a_people » of type people

➡ The action decrements by one the capacity of the
building (one place less)

capacity <- capacity - 1;

➡ Then the action places the agent inside the
building:

a_people.location <- any_location_in(shape);

Step 9: go_in house action 20

The any_location_in(an_agent/
a_geometry) operator returns a

random point inside the
geometry/agent

! Exercice 13: In the init section of the world agent, after
creating the house agents:

➡ compute the total capacity of the house agents (sum of house
capacity):

int total_capacity <- sum (house collect each.capacity);
➡ compute the number of people agents to create (nb of house

cells x density) :
int nb_people <- total_capacity * density;

➡ create nb_people people cells: for each of them, choose a
house which has still the capacity to add this people, then ask
the house to apply the go_in action with the created people.
create people number: nb_people {
 my_house <- one_of (house where (each.capacity > 0)) ;
 ask my_house {
 do go_in a_people:myself;
 }
}

Step 10: people initialization 21

The sum(list) operator
returns the sum of the list
The list collect expression

operator returns the list
created after applying the

expression on each
element of the left list

The ask statement allows
to ask to one or several
agents to do something

The do statement allows to
apply an action, the value
of argument are given by

using the name of the
argument + :

The myself keyword allows to
refer to the agent concerned

by the previous context

! Exercice 14: Add a reflex to the people species called
« compute_happiness »:

➡ compute the list of people agents that are located within the
distance distance to the agent (its neighborhood)

➡ compute the number of people agent in the neighborhood

➡ compute the number of people agents in the neighborhood
that have a different color

➡ compute the is_happy variable: the people agent is happy
there is no one in its neighborhood or if the rate of people
with a different color is lower than its preference

Step 11: people compute happiness reflex

! Exercice 15: Add a reflex to the people species called
« move »:

➡ add a condition (Condition) to the reflex activation: the reflex is
activated only if the agent is not happy:

➡ Concerning the reflex gamp code, first, ask my_house to apply
the action go_out

➡ then, set the variable my_house to one house with a capacity
higher than 0

➡ finally, ask my_house to apply the action go_in with myself as
an argument

Step 12: people move reflex

! Exercice 16: Add a monitor to the my_GUI_xp experiment:
➡ Text: nb of happy people; value :

people count each.is_happy;

Step 13: monitor

The list count condition operator
returns the number of elements of the

list that verifies the right condition

! Exercice 17: Add a display to the my_GUI_xp experiment called
« charts »:

➡ add a new layer called « charts » of type « chart ». This chart is
a series chart (nothing to change), with one data series: the
number of people that are happy (green color: #green) :
people count each.is_happy;

Step 14: chart display

! Exercice 18: Add a reflex to the world agent called
« end_simulation »:

➡ This reflex is activated (condition) only when there is no more
unhappy people:
empty (people where not each.is_happy)

➡ The reflex pauses the simulation:
do pause;

Step 15: stop simulation

The empty(list) operator returns true when
the list is empty (false otherwise)

pause is an action
of the world agent

Conclusion of model 2: it is already finished!

