Initiation to Algorithmics
with Scratch

Benoit Gaudou

with inputs from Géraldine Abrami

v1, 14th July 2015

oS0

Initiation to Algorithmics with Scratch

The aim of this document is to provide basic knowledge in algorithmics for trainees
taking part in agent-based modeling and simulation training sessions. It has been
produced for MISS-ABMSS 2015 as a prerequisite distant teaching for participants with
no or very little experience in computer coding and algorithmics.

The objective is that the participants who go through this document and do the
associated exercises get basic definitions and practice of what is the basis of computer
coding, independently of any programming language : what are statements, variables,
procedures, functions, loops and how can they be manipulated. They will also get a first
glimpse on what is object-oriented computer coding, which we use as a basis for agent-
based models programing.

In this document, we will use Scratch' to develop algorithms. It has the advantage to allow
developers to implement algorithms using graphical programming tools. In each section of the
document, basic definitions are given, and then exercises using Scratch are proposed to get a
practice of the concepts defined.

Most exercises are easy and allow to understand the concepts. However more challenging
exercises have also been inserted. They are noted with stars **. Beginners should do easier
exercises in priority and maybe keep the more tricky **exercises for later !

The solutions to the exercises are given at the very end of the document.

Algorithms: introduction
Introduction to Scratch
First algorithm with Scratch
Sequence of statements
Variables
Conditional statements
Loop statements
Manipulation of sets (or list) of values
Sub-algorithm: procedure and function
Toward object/agent-oriented approach
References
Solutions
Sequence of statements
Variables
Conditional statements
Loop statements
Manipulation of sets of values
Sub-algorithm: procedure and function

L https://scratch.mit.edu/

Algorithms: introduction

Definition [Cormen et al., 2001]

Informally, an algorithm is any well-defined computational procedure that takes some value,
or set of values, as input and produces some value, or set of values, as output. An algorithm is
thus a sequence of computational steps that transform the input into the output.

The various concepts that will be investigated in the sequel are the following ones :
Sequence of statements

Introduction to variables

Conditional statements

Loop statements

Manipulation of sets of values

Procedure and function

Toward object approach programming

Introduction to Scratch

Scratch is a free software and web portal developed by the MIT in order to allow kids to
learn how to develop interactive stories and animation in a collaborative manner. In a
Scratch project, you can control sprites and make them move, interact.. But the
language proposed to control these sprites contain all the basics structures necessary in
any algorithms. So Scratch can be used to develop any kind of algorithms.

In the sequel, for each part there will be exercises aiming at controlling the sprites, but
also exercises to design more theoretical classical algorithms.

The tool is available online at the address: https://scratch.mit.edu/.

A wiki is also available: http://wiki.scratch.mit.edu/wiki/Scratch_Wiki.

In addition, an offline editor is available:
https://scratch.mit.edu/scratch2download/.

When you access the website, you can create a free account to save your projects. You
can create a new project by clicking on the dedicated menu (Create), even if you have
not an account.

@FPWE8 Croate Explore Discuss Help

Welcome to Scrat

D C—

View all

Click to create a new project |Scratch News

o, viiens 4 Click to create a
comel!

seratch i NEW a@ccount
Celebrate)|

3 m e 74 ? ﬁ Scratch Video Update Ep.8

Learn how to make a ry out star Connect with other L
project in Scratch Proje Scratchers

o~ B

After having created a new project, you access to the interface where you can create
your algorithms and observe the result of their execution (with the sprite).

T T)

RGR—— e [5 oo oonsess
Algorithm part
Execution view

Aprins My goc be: :\7 Q‘ﬂ
Statement
ax/ae -

library N

The three main parts of the interface are:
e on the left: the Graphical User Interface showing the execution of the algorithm.
In particular, you can observe here the sprites, their moves ...;
e in the center: the library of blocks (statements), that you can use to build the
algorithm (in the right part);
e on the right: where the algorithm will be written by putting together blocks.

To build an algorithm, we only need to drag and drop elements from the block library to
the algorithm part.

The library contains a huge set of block, ordered by categories. Each category has its
own color. For example, all the blocks related to the sprite’s motion are blue.

Scripts 08 e Motion: blocks to move sprites (move, rotate,...) and variables
dealing with their position or direction

I.mm e Looks: blocks to modify the way the sprite looks like. It also

i contains blocks allowing sprites to say anything.

I e Sound: everything related to sound.

e Pen: blocks allowing the sprite to write on the background.

e Data: it allows to create new variables and lists. It provides
also statements to manage them.

e Events: blocks to react to events, in particular when the user
clicks on the green flag.

e Control: blocks controlling the execution of the algorithm, e.g.
conditionals, loops...

e Sensing: blocks dealing with interactions with the user, in
particular with mouse clicks... [t allows also sprites to ask users
to give a value.

e Operators: blocks to do computation (addition,
multiplication...), to choose a random number, concatenate two
strings, compute conditions...

e More blocks: this allows to create new blocks, that will be
used to defined procedures.

First algorithm with Scratch

Aim:
e Run 1 statement when the green flag is clicked.

Exercice O:

As a first algorithm, we want that, when the user clicks on the green flag, the sprite

moves by 10 steps from its actual location.

First, we need a block that is activated when the event
“click on the green flag” is triggered. In the library, chose

Events and the block m . Drag and drop this block in
the algorithm part.

fl Votion
I Looks] Control

I Sound I Sensing

I Pen I Operators

I Data I More Blocks

The block describing the sprite’s move can be found in the
Motion set of statements.

Chose
algorithm part.

Drop the second block (move) just below the former one,
they will stick together.

move @) steps

and drag and drop it into the

Motion I TS
I Looks [Control
I Sound I Sensing
I Pen I Operators

I Data I More Blocks

move € steps

Now the user can click on the green flag and observe the sprite’s move. Try to click again

on the green flag to make it move again.

[-‘ Untitlec-6 F
aar by bgaudou {unshared) 1

Click on the green flag
to run the algorithm

ﬂ Conlral
I Sersing

I Pen I Operators

Data I More Blacks

point In direction €59

gew x €Dy O

LE
®,

N

when clicked

Note: in Scratch, the shape of the values within various blocks has a meaning. In
particular:

o e for a number value
1 e for a string value
4 e for aboolean value (i.e. anything that can be evaluated to true or
false). Test operators can be found in the Operators Menu.

Sequence of statements

As defined in the first section, an algorithm is thus a sequence of computational steps that
transforms the input into the output.

We can define each of these steps as a statement (e.g. variable declaration or
affectation, loop statement, conditional statement...).

To compute the output from the input, several statements are generally needed, that
can be executed sequentially. In particular, sequence of statements are needed to do
several computations, store intermediate results in variables, repeat several times a
same subset of statements with various variable values or execute two or more
alternative statements depending of the result of a previous computation or
interaction with the user.

We can distinguish two kinds of statements:

e simple statements: these statements are often an imperative command,
basically only 1 line of code or 1 block in Scratch.

e embedding statements: these statements enclose a sequence of statements. It is
for example the case for the loops or conditionals. Loops will execute the
enclosed sequence of statements several times. Conditional statements will
only execute the enclosed sequence of statements if a given condition is met.

Aim:
e (Combine several statements;
e Add an infinite loop;
e Manipulate the various menus.

Exercice 1: From the previous algorithm (with the 2 blocks: IR and),
add the following statements:

. if on edge, bounce
e if on edge, bounce: i st
e say Hello! for 2 seconds

: hange size by
e change the size

Hint: the color of the block is similar to the color in the menu of the library.
Try it: try to change the order of the blocks and see what happens

Exercice 2: With the previous algorithm, the user has to click several times on the green
flag in order that the sprite moves several times. We will had a block to repeat forever

orever |
the 4 blocks we have already added. Thus add the “==== block to repeat the four
statements.

oevr |
Note: the “==== block is different from the 4 previous blocks we have used previously
as it embeds a set of statements inside itself. It has a beginning and an end; between the

begin and end a set of statements can be enclosed. You can thus drag and drop the

—=5 block below the J block and around the 4 statements.

oever |
Try it: try to put some statements out of the === block and see what happens. Change
what is in and out of the block.

Hint: in Scratch the manipulation of the statements inserted in an algorithm may seem a
little tricky. Note that when you move a statement from a block, it takes with it all the
statements stuck below it.

Note also that you can put statements or block of statements that you are not using

anywhere in the algorithm window. If they are not stuck under the el they will
not be considered in the execution of the code.

In this way you can easily “put on the side”statements or blocks of statements you are
not currently using and potentially reuse them later.

Variables

In an algorithm, it is often useful and necessary to store results of intermediate
computations and to be able to reuse them in the sequel of the algorithm. It is done
using variables. In a variable, we can store a numerical value (integer or float), string
value or boolean (only true or false). But a variable can also store a set (a list) of
elements.

In any algorithm, variables should first be declared and initialized, i.e. the first
statements of an algorithm should be dedicated to name and give an initial value to
variables.
It is important to choose carefully the variable name, so that it can be meaningful for
the developer himself, but also for any other developer who could read and reuse the
algorithm.

In Scratch, sprites have built-in variables such as their location (m and

m), or the size of their shape (m). These variables cannot be modified
directly by the user (as other variables defined by the user can), but need particular

statements to be modified (e.g.). Most of the Motion blocks will alter these
two variables.

Scratch allows the developer to create his own variables. The menu Data is dedicated
to this purpose. To create a new variable, click on “Make a variable” button. Scratch
asks the variable name. In the screenshot, we chose “speed”. Scratch also creates a set

of new blocks allowing to manage the variable: —M will change the variable
value, —JM will increment it by a given value.

IS
Make a Variable

Sensing 7)

I N . ||

Make a Variable st able speed |
Make a List —_,—mj

Aim:
e Display the position: manipulate operators on built-in string variables
(concatenate)

10

Increase the sprite speed: manipulate operators on a numerical user defined
variable
Swap 2 variables.

Exercise 1:
We use the algorithm of Exercise 2 from previous section as startpoint.
Modify it in order to display the coordinates of the sprite:

Hint :

Make the sprite say the x position (instead of Hello) with .
Make the sprite say « My x position is » and the value of the x position variable,

using the block to concatenate strings (it works to concatenate a
string and a number too).

Make the sprite say « My location is : x= x-position and y= y-position » (instead of
x-position and y-position, it should display its current x position and y position

variable), using several blocks.

the built-in variables of sprites can be found within the different library menus,

after the statements.

Exercise 2:
Let consider the previous algorithm. The sprite will move forever at the same speed
(10). We now aim at increasing the sprite speed after each move.

Hints:

Create a new variable (to represent the speed of the sprite).
Initialize that speed at 0 at the beginning of the algorithm.
Use the speed variable in the move statement.

Increase the speed after each move.

The following blocks can be useful: —M, g e e)

**Exercise 3: (theoretical exercise)

Create a new algorithm, with 2 variables x and y, initialized to 10 and 50.

Write the algorithm that swap the value of the two variables x and y. At the end, x should
be equals to 50 and y to 10.

Hint: an additional variable can be useful.

11

Conditional statements

The flow of the algorithm should be able to adapt to the various possible variable or
inputs values. To this purpose algorithms use conditional statements.

These statements can execute a set of statements if and only if a condition is true or
choose between two sets of statements depending on the condition value.

[t can take the two following forms:
IF (condition is true)
THEN
execute a set of statements
END IF

or

IF (condition is true)
THEN

execute set of statements1
ELSE

execute set of statements2
END IF

The condition could be for example equality between variables (x=y), the sign of a
variable (x>0) or any other expression that can be evaluated to either true or false. For
example in the algorithm of the Exercise 2 of the previous section, the speed could be
increased only if it remains below a maximum value.

In Scratch, these two forms of conditional statements are:

= e
e
= e
h_,_J
e -

In each of them a set of statements can be embedded after the then and the else.
7_‘/‘ or i In
addition, logical operators allows to combine conditions: not g (returns the
converse of the condition value, i.e. true if the condition is false and false if the
condition is true), «® (returns true if and only if both conditions are true,
and false otherwise).

For example, the condition D s true if and only if i equals 7 and x
lower than y. In other cases, it is false.

To write the conditions, Scratch provides following operators:

12

Aim:

e Add a max speed variable and increase (by 1) the speed if and only if the speed is
below the max speed;

e Add a max speed variable and increase (by 1) the speed if the speed is below the
max speed, otherwise (if the speed has reached the max speed), set the speed to
0;

e Add a max speed variable and increase (by 1) the speed if the speed is below the
max speed. When the speed reaches the max speed, decrease it until reaching 0.
When it reaches 0, increase it to Max speed...

Exercice 1:
From the algorithm of the Exercice 2 of the previous section:
e add an additional variable to define the maximum speed (initialize it at 50 at the
beginning)
e add a conditional in order to increase the speed if and only if the speed is lower
than the maximum speed.
Try it: notice that the “say” statements takes a long time to execute. Try to remove it
from the block that is executed to increase the speed of the program.

Exercice 2:

We will modify the previous algorithm in order that:
e if the speed is lower than the maximum speed, increase the speed
e else (if the speed is greater), set the speed to 0.

**Exercice 3 :
Modify the previous algorithm in order that:
e the speed is increased from 0 to the maximum speed
e when the speed reaches the maximum speed, it is decreased from maximum
speed to 0
e when the speed reaches 0, it is increased from 0 to the maximum speed...

Hints: a possible way to do it is to add a new variable used to increment/decrement the

speed. Its initial value is 1. It becomes -1 (to decrease speed) when the speed reaches
the maximum speed and becomes 1 when the speed is 0.

13

Loop statements

In algorithms, it is often useful to repeat several times the same statements. At each
new call of the set of statements, only the value of a variable can be modified. It avoids
write several times the same lines in the algorithm.

It becomes also necessary to use loop statements when the number of repetitions is
not known when the algorithm is written. The number of repetition can be an input of
the user, as in an algorithm computing the sum or average of the N first integer
numbers. Or it can depend on the state of a variable, for example when an algorithm
should compute the sum of the elements of set or a list.

Finally, in several cases, the number of repetition is not known even at the beginning
of the loop. For example, an algorithm can ask the user to type a number greater than
10 and the algorithm repeats this request until the user has typed a correct number.

Loop statements can take following forms:
LOOP (N times)

set of statements
END LOOP

or

LOOP UNTIL (condition is true)
set of statements
END LOOP UNTIL

or

LOOP WHILE (condition is true)
set of statements
END LOOP WHILE

The first form is used when the number of repetitions is known when the loop begins.
In contrary, LOOP UNTIL and LOOP WHILE have an unknown number of repetitions.
LOOP UNTIL is repeated until the condition becomes true whereas the LOOP WHILE is
repeated while the condition is true.

In Scratch, the two kinds of loop statements are:

pest €
Vo
= -)
o o —J
In Scratch there is also a specific block for forever repeat of the embedded statements:
P
o —

14

Aim:

e Repeat N times;
e Repeat until loop with 1 condition;
e Equivalence between repeat N times and repeat until;
e Repeat until loop with several conditions.
Exercice 1:

Write an algorithm that repeats 10 times the following statements:
e the sprite moves why 10 steps
e waits 1 second.

Hint: wait is in the Control menu

Exercise 2:
Add to the previous algorithm the fact that the sprite says “Step 1” after its first move,
“Step 2” after the second one and so on...

Hint: an additional variable can be created in order to store the number of repetitions.

Exercise 3:
Write an algorithm that moves the sprite until its x position is greater or equals to 100.

Exercice 4:

Write an algorithm that computes and displays the sum of the 12 first integers with 2
alternative algorithms, one with a “repeat N times” loop and one with a “repeat until ”
loop.

Exercice 5:
Write an algorithm to play the following game with the sprite.
The program chooses a random number between 1 and 20. Then it asks the user to
choose a number and waits for an answer. It displays (says):
e “Too low! Try again”: if the user has proposed a number lower than the chosen
number
e “Too high! Try again”: if the user has proposed a number greater than the chosen
number
e “You win!”: if the user has proposed the chosen number.
The program should continue while the user does not find the right number.

Hints: the following blocks can be useful:

° : to get a random value between 1 and 20. The value can

thus be stored in a variable to be kept all along the algorithm.

m What's your name?m
[]

value. The user’s answer is stored in the @ variable.

shows a message and waits for the user to type a

15

Manipulation of sets (or list) of values

Up to now, variables we have created can only store one single value.

It can be useful to manipulate a set of values. The simplest examples in mathematics
are vectors or matrices.

For example, if we want to create an application helping a teacher to manage marks of
his students, it could be useful to manage together all the marks of a student to be able,
for example, to compute his average mark. In addition, the number of marks can be
different for two distinct students, as one can have missed some exams. A list has the
advantage that the number of elements it contains is not fixed a priori.

In general, a list keeps the order in which elements have been inserted. In a list,
elements can be added (at the end) or inserted at a given location (defined by an
integer index value). They can also be removed or replaced.

Finally it is possible to get the ith element of the list (without removing it) or to get the
length of the list (number of elements).

In Scratch, in the Data menu, we can also make a list (and give it a chosen name). This

makes available a set of statements to manage lists.
Data I More Blocks

Make a Variable

Make a List
» CAD

add to my_list

delete €59 of my_list

insert at @9 of my_list

replace item @9 of my_list with [

item @9 of my_list

length of my_list

my_list contains ?

show list my_list

A

(= 8

m:
o Store datain a list;
e Manipulate a list;
0 Get the max element;
o0 Sortit.

Exercice 1:

16

We consider the algorithm of the Exercice 3 of the section Conditional statements as
startpoint (the sprite increases and decreases its speed from 0 to maximum speed).
We aim at storing all the x positions where the sprite has reached the maximum speed:

e (reate a new list variable

e Atinitialization, empty the list (i.e. delete all the element of the list variable)

e Add to the list the x location each time the sprite reaches the maximum speed.

**Exercice 2:
Modify the previous algorithm in order that the sprite always says the maximum x of the
list (i.e. the maximum of all the x at which it has reached the maximum speed)

Hint: a new variable could be useful. This variable can be computed each time the
maximum speed is reached and an element added to the list.

**Exercice 3:

Modify the algorithm of the Exercice 1, in order that the list is always sorted. This means
that every time a value is added, it should not be added at the end, but inserted at a
location which keeps the list sorted.

Exercice 4: (Memory game).

The sprite will ask you to memorize a list of numbers that increases every step.

The algorithm will randomly choose a number between 1 and 100 and store it in a list of
numbers. It will say the new number to the user and ask him to memorize it. It then asks
the user to type one by one each number of the list. When it has asked all the number of
the list, it will choose a new random number, and so on...

The game ends as soon as the user type a wrong answer.

Example of game flow:

Sprite says: “The new number is: 35”. (wait for 2 seconds)

Sprite says: “What is the number 1 ?”

User types: “35”

Sprite says: “The new number is: 47”. (wait for 2 seconds)

Sprite says: “What is the number 1 ?”

User types: “35”

Sprite says: “What is the number 2 ?”

User types: “47”

Sprite says: “The new number is: 2”. (wait for 2 seconds)

Sprite says: “What is the number 1 ?”

User types: “35”

Sprite says: “What is the number 2 ?”

User types: “47”

Sprite says: “What is the number 3 ?”

User types: “3”

Sprite says: “You lose. Game Over”

17

Sub-algorithm: procedure and function

When algorithms become long in terms of number o f lines and statements, it becomes
useful in order to keep the algorithm clear and readable, to split a single algorithm in
several parts (that can be procedures or functions).

Procedures or functions can also be useful when a same sequence of statements is
used at several places in the algorithm. Then it becomes useful to factorize this part in
a procedure or function.

Procedures or functions can be defined as sub-algorithms which take some input and
use them in computation to produce a result.

A function is a sub-algorithm which takes some inputs and returns a result. The inputs
are not modified.

In contrarily, a procedure is a sub-algorithm which does not return any result but
modify the value of inputs. A procedure is used when a sub-algorithm needs to
produce several outputs.

i Ieen I
Scratch allows the user to define new blocks to [

define sub-algorithms. It is limited on this point ...
because a new block can neither return any e edse
value, nor modify its input parameters. It will

been used to modify directly the variables of

New Block

o

the sprite. e
Options

Add number input: __J

The More Blocks menu allows the user to A string nput =

define a new block, to modify its name and to Add boolean input: ®

add inputs (from various types). Add Iabel text: tox

7 Run without screen refresh

OK Cancel

The creation of a new block creates a new beginning of algorithm and a new block
allowing to call this sub-algorithm anywhere in other algorithms. In the example
below, the my_new_block is a new sub-algorithm, in which number1 and stringl are
the two input parameters. numberl and stringl becomes also variables which can
(Iand should) be used in the sub-algorithm only.

Data More Blocks

Make a Block

my_new_block o. define my_new_block ' numberl ' stringl

Add an Extension

18

Aim:

Define input / output of a procedure;
Write a procedure;

Call a procedure;

Idea on functions.

Exercice 1:
The aim of this algorithm is to listen mouse clicks on the screen, to get the coordinates of

the mouse, and to locate the sprite on the mouse location, its direction being in direction
90.

To this purpose, first define a new block MoveSprite, with 2 number inputs (new_x and
new_y). It will locate the sprite on this new coordinates and make it point in direction

90. The two following blocks can be useful: and AR a .

We will now write the main part of the algorithm. Details of the algorithm:
e Wait until the user has clicked
e move the sprite at the location of the mouse (calling the new block MoveSprite)
e Then repeat forever:
© move the sprite by 10 steps and if on edge, bounce
o if the user has clicked somewhere, move the sprite at this location.

Hints:

e to create inputs for a block, click the “options” menu when you create it or, after
it has already been created, right-click on it, select “edit” and click the “options”
menu

e when defining a block in the algorithm window, its inputs can be taken from the
definition of the block and slided as variables within the statements

e The blockm if the user has clicked.

e If the user has clicked, the two variables @ and | mouse x) contains the
coordinates of the click.

**Exercise 2: (Compute factorial)
The aim of this algorithm is to compute and store in a list the factorial of the integers
from 1 to 10 (or any N...). Note that the factorial of a positive integer number is defined
by: nl= 1*2*3*_*(n-1)*n. For example: 4! = 1*2*3*4 =24.
e First create a variable fact and a list variable.
e (reate a new block which computes the factorial of a number given in input. The
result is stored in the fact variable.
e (reate the main algorithm which computes, for each i from 1 to 10, the value of i!
and add it in the list. The list contains thus at each index i the value of i!.

19

Toward object/agent-oriented approach

We have now a global overview of the main principles and structures of algorithms.

In agent-based (and object-oriented) algorithms, all these principles are used. But in
addition, the algorithm is designed by considering entities composing the
phenomenon to model.

Each type of agent (or object) has its own variables describing its state and its own
algorithms (functions and procedures) describing its behaviors. For instance all “car”
objects or agents can be described with variables such as “color” or “brand”, and have
behaviors such as “turn_wheel” or “change_break”.

All agents or objects of a same type will have the same variables and same algorithms
describing their behaviors, but they will not act identically, as their state variables will
be distinct for each agent or object. For example, 2 cars may not have the same brand,
and depending on the brand, the “change_break” behavior may act differently.

An idea of objects / agents can be found in Scratch with the sprites : you can define
different sprites and give them different variables and algorithm, so they will act
differently when you press the green flag. However it is not possible to define types of
sprites as it is possible to do when using object-oriented programming.

The essence of object-oriented programming and agent-based models is to define
agents/objects states and behaviors and then manage how they can interact with each
others. This can be done by defining in agents / objects behaviors how they react
when they perceive something from another agent / objects, and / or define behaviors
which send messages to others.

Another level of control is generally done through a “scheduler” which controls
centrally when an agent / object should trigger a behavior.

In Scratch, sprites can perceive distance to other sprites and interact by broadcasting
messages and reacting to messages they receive. But these messages cannot be
directed to one particular sprite and there is no other way for sprites to interact. Also
there is no sense of a global “scheduler”, all sprites behaviors being triggered by
events.

All these concepts of agents / objects and scheduler will be part of the MISS-ABMSS
training, so we have not included exercises about it in this document. However if you
are already curious, check for instance this scratch project where you can see how 2
sprites can be defined and interact with each other
https://scratch.mit.edu/projects /12367177 /

Aim:
e create different objects (sprites) with different behaviors and different variables
e understand the difference between local variables and global variables

20

e manage interactions between objects (sprites) through message sending and

global variables writing
Exercice 1

e we will use the exercice 5 from the “loops” section. The objective is to have
sprites playing the guessing game together : one “game master” sprite who is
having the others guessing and two “player” sprites who will have 2 different
strategies to guess

e create 1 sprite “game master” and 1 sprite “player”

e create the “game master” behavior by modifying the “loops” section exercice 5
within the “game master” algorithm window

© make sure chosen_number is a local variable for “game master”. This
means only “game master” sprite can access (read and write) this variable
: chosen_number is unknown to all other sprites than “game master”

O replace interactions with user by interactions with “player” sprite :

m replace ask statement by broadcast and wait statement. It means
that “game master” will send a message to the “player” sprite and
wait for the “player” sprite to run its reaction to the message to
continue

m add broadcast and wait statements to say statements (so that is its
still possible to follow what happens - messages do not appear in
the execution window)

O create a global variable named “answer”. This means this variable can be
accessed (read and write) by all sprites : it will be written by “player” and
read by “game master”. Replace the answer sensing (blue) by the answer
global variable (orange)

e create the “player” behavior within the “player” algorithm window

o player will need 2 local variables “lower” and “higher” so that it can adjust
its guess. These variables should be initialised to respectively 0 and 20 at
the beginning of the game

o player should react to the message sent by game master :

m when receiving “choose a number”, it should choose a number
between lower and higher and write it in the “answer” variable

m when receiving “too low” or “too high”, it should adjust its “lower”
or “higher” variable

m when receiving “you win”, it should be happy!

Hints

e sprites can be added and modified in the sprites window in the lower left part of
the screen: click on “new sprite” to create a new sprite and right-click on an
existing sprite and then “info”to modify its name

e each sprite has its own algorithms : click on a sprite in the sprites window to get
its algorithm window. This is equivalent to objects / agents having their own
behaviors

e in the execution view, local variables appear with the name of their sprites, global
variables appear with nothing

e messages statements are in the events section

Try it : create a second player, maybe with a different strategies and check who wins
between the two players! As Scratch do not allow directed message, you will have to
manage differentiation between player 1 and 2. Maybe the easiest way would be to have

21

2 global variables, answerl for player 1 and answer2 for player 2, as well as distinct
messages “1 - too low” / “2 - too low”, etc.. This is a big limit of Scratch compared to
proper object oriented programming where interactions between different objects can

be managed much more transparently.

22

References

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. 2001.
Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education.

23

Solutions

Sequence of statements

Exercice 1:

when clicked

move §) steps

if on edge, bounce

change size by)

Exercice 2:

when clicked
forever

move §) steps
>

if on edge, bounce

3
) Hello!
3

change size by €1
» 2

Variables

24

Exercice 1:

when clicked

forever

move §D) steps
>

if on edge, bounce
>

say join [EEEEN join x position

2
change size by)

Exercice 2:

when clicked

set speed to J

fo:Téver

move | speed steps
2

if on edge, bounce
>

say | join [EEEEN ioin x position

| 3
change speed by @)

join y position

join y position

25

Exercice 3:

when clicked

set X

set Y

set
set

set

T[] After Swap: x = BTSN TN -y = y

Conditional statements

Exercice 1:

when clicked

set vitesse_max to m
set speed to
forever

/move speed steps

>

if on edge, bounce
2

say | join [ZEEEN ioin x position join BN Y position

speed < Vvitesse_max _ then

change speed by €)

26

Exercice 2:

when clicked

set

set

vitesse_max to m
speed to n

forever

‘

move | speed steps

2

if on edge, bounce

say | join [EEEEN join x position

2

b
if

speed < Vvitesse_max then

change speed by @)

else
o

set speed to

join y position

27

Exercice 3: First solution:

when clicked

set vitesse_max to E
set speed to]
set increaseSpeed to

forever
move | speed steps
2

if on edge, bounce
>

say join [EEEEEN join x position join JERER Y position

2

change speed by increaseSpeed
b

if speed = vitesse_max _ then

set increaseSpeed to H

speed = [J then

set increaseSpeed to

Second solution:

when clicked

set vitesse_max to m

set speed to [

set increaseSpeed to

forever

-

move | speed steps
»

if on edge, bounce
»

say join [EEXEERN join x position join [BNEM Y position

h

change speed by increaseSpeed
)

if speed = vitesse_max or ' speed =ﬂ then

o

set increaseSpeed to @) - ' increaseSpeed

Loop statements

Exercice 1:

when clicked

repeat 1)

move @) steps
,

wait @) secs

Exercise 2:

when clicked

set i to]
repeat 1)
/change i by @
: move @) steps

say | join ETY i

'
wait @) secs

Exercice 3:

when clicked

repeat until x position >

move §[) steps

say [EGI

29

Exercice 4:

when clicked when clicked

set i set |

set sum set

repeat €E) repeat until

@

set sum A sum
2

set i

\

say [sum for @ secs say (sum for @ secs

30

Exercice 5:

when clicked
set chosenNumber to pick random @) to @)

repeat until answer = chosenNumber

'

ask and wait

h
if answer < chosenNumber then

CEV Too low ! Try againf{s 1 2 BT

else
if answer > chosenNumber then

CE\ Too high | Try again BT 2 BT

else
£

say for @ secs

Manipulation of sets of values

31

Exercice 1:

when clicked

set max_speed to [

set speed to [[J

set increaseSpeed to
delete €[} of list_x_at_max_speed

forever
move | speed steps
>

if on edge, bounce
2

say join Bl join x position ' join y position
}
if speed = max_speed then

'

add x position to list_x_at max_speed

\

2
set speed to speed + increaseSpeed
S
i speed = max_speed or ' speed =[J . then

@

set increaseSpeed to () - ' increaseSpeed

32

Exercice 2:

when clicked

set max_speed to Y
set speed to [J
set increaseSpeed to Y
set maxx to BFEY
set mean_x_max_speed to [J
delete €89 of list_x_at_max_speed
forever
| move | speed steps

>
if on edge, bounce

if speed = max_speed then

»

add x position to list x_at_max_speed
—

x position > ' max_x _then

set maxx to x position

set temps_sumx to [

i +@

set temps_sum_x to ' temps_sum_ X + item' | of list_x_at_max_speed

mean_x_max_speed to ' temps_sum x / length of list_x_at_max_speed

say join [EY8E Jjoin max x join [BIITUEN mean_x_max_speed

N

»

set speed to speed + IncreaseSpeed

»

if speed = max_speed or | speed

@

set increaseSpeed to () - ' increaseSpeed

33

Exercice 3:

when clicked

set max_speed 1o m

set speed to [
set increaseSpeed to
delete €8P of list_x_at_max_speed

forever

move | speed steps
B

if on edge, bounce
| ®

if speed = max_speed then

xset i to |y

[3

set found_location Ll false
b

repeat until i > length of list_x_ar_max_speed

if item | i of list_x_at_max_speed > X position

set found_location 1o
| 3

set i w i -@

o i +§

]
insert x position at' i -] of listx_at_max_speed

2

set speed to speed + increaseSpeed
[3

if speed = max_speed or speed =[] then

set increaseSpeed to i) - increaseSpeed

=

found_location = [Ty

then

34

Exercice 4:

when clicked

delete €[} of Numbers_to_memorize

set user_error to

repeat until ~ user_error = [

-

set new_number to pick random @ to
>

add | new_number to Numbers_to_memorize
3

say | join REICYITLIE] new_number = for @ secs
>
set i tofdd

r
repeat until i = length of Numbers_to_memorize or user_error

-

set i

3
E @ (]l What is the number BTN and wait

[—

if not item! i of Numbers_to_memorize = answer then

-
set user_error to m

=

Sub-algorithm: procedure and function

Exercice 1:

when clicked
define MoveSprite ' new_x

wait until mouse down?

. go to XX new_Xx y: nhew.y
MoveSprite (| mouse x | mouse y

= oint in direction @
forever E

move €D steps
»
if on edge, bounce

mouse down? _then

MoveSprite (| mouse x | mouse Yy

new._y

35

Exercice 2:

when clicked define factorial ' n

delete @R of fact_list
set temp_fact to
set fact o [J

t i tofpl
set | to .S
repeat €D if n = then

o

factorial ('} set fact to
} \
insert (fact at(j of factlist

else
{

repeat. n

o

set temp_fact to ' temp_fact * i

set fact to temp_fact

N

Towards object /agent-oriented approach

Exercice 1:

36

X: 31 ¥ 108 4

Sprites New sprite: @& / ¢l 13

when clicked

set chosen_number

to pick random o to @

repeat until answer = chosen_number

broadcast choose a number
§

if answer < chosen_number then

and wait

=178 too low.. try again! R 9 secs
>

broadcast too low.. try again!

and wait

answer > chosen_number _then

=1 too high try again! RIS 9 secs
>

broadcast too high.. try again!
else

say FCIRGLY for 9 secs
3

broadcast you win!

and wait

and wait

when dlicked

set higher to

set lower to [

when I receive choose a number
set answer to pick random lower to higher

say answer foresecs

when I receive too high.. try again!

set higher to

when I receive too low.. try again!

set lower to

when I receive you win!

point in direction

point in direction @

=378 Youpi !

37

