
Introduction to GAMA-platform
Toward a traffic model

Benoit Gaudou, (Univ. Toulouse 1, IRIT), benoit.gaudou@ut-capitole.fr

Introduc)on to GIS data and its
management in GAMA

What are Geographic Informa)on Systems (GIS)?

- A computer system designed to capture,
store, manipulate, analyse, manage, and
present all types of geographical data.

3

The real
world

Database

Representa)on of geographical data

4Vector Raster

Real world

Vector Raster

– Raster (grid or image): A geographical
phenomena is represented as a par;;on
(in cells) of the geographical space. Each
cell has one or several a>ributes that
define its content.

– Vector: A geographical phenomena is
represented by one or several geometric
primi;ves (point, line, polygons),
described by a list of coordinates and an
interpola;on func;on. A classic vector
format filed is the shapefile: it is
composed of 4 main
files: .shp, .dbf, .shx, .prj

A@ribute data – non spa)al data

- In raster datasets, informa;on associated
with each unique value of a raster cell.

- In vector dataset, data stored in a table
and linked to each object by a unique
iden;fier

5

Attribute of a raster format

Attribute of vector format

GAMA provides many features to manage GIS data and
vector geometries

6

GAMA allows modellers to display shape files and
a@ributes informa)on

7

Every agent in GAMA has a geometry (its shape).

An agent’s geometry can be:
- a point (default),
- a polyline,
- a polygon or
- a complex geometry (2D-3D)

An agent geometry is accessible through
GAML thanks to the “shape” built-in
a>ribute.

World agent (<<global>> species) have also a
“shape” built-in a>ribute which define the
shape of environment

8

Agents can be created directly from GIS shapefile

create my_species from: my_shapefile;

9

Each GIS object
becomes an agent of
the specified species

my_shapefile

my_species

The shape of the “world” agent represents the global
environment of a model

By default, a model global environment is a
2D square space of 100m x 100m

It is also possible to redefine the global
environment using a shapefile or asc file.

10

Environment

global{
file river_shapefile <- file("../includes/river.shp");
geometry shape <- envelope(river_shapefile);

}

Introduc)on to a simple traffic simula)on

Inhabitants move from one building
to another one on a road network.

11

inhabitant

In a building, they will stay for some
time: at each simulation step, they

have a probability to leave
(proba_leave)

Step 1: defini)on of building and
road agents

Objectives:

- Definition of building and road species

- Creation of building and road agents

- Display agents

Defini)on of the building species

TO DO: define the building species, with an
aspect called “geom” drawing the shape of
the agent with a grey color.

Answer:

13

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

species building {
aspect geom {

draw shape color: #gray;
}

}

The agent geometry is
accessible get
through the shape
attribute.

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Defini)on of the road species

TO DO: define the road species, with an
aspect called “geom” drawing the shape of
the agent with a black color.

Answer:

14

species road {
aspect geom {

draw shape color: #black;
}

}

We have defined the building and road species.
Next step: creation of the building and road agents !

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Defini)on of the shape files

TODO: define 2 new global variables (with
the file type) geYng as value the shape file
of buildings (resp. roads). Use the last on to
redefine the environment size.

Answer:

15

global {
file shapefile_buildings <- file("../includes/buildings.shp");
file shapefile_roads <- file("../includes/roads.shp");
geometry shape <- envelope(shapefile_roads);
...

}

Environnement

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Crea)on of building and road agents

TODO: define an init sec;on (in the global)
to create building and road agents from the
2 shapefiles.

Answer:

16

global {
//variables
init {

create building from: shapefile_buildings;
create road from: shapefile_roads;

}
...

}

We have created building and road agents.
Next step: display them !

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Display building and road agents

TODO: add building and road agents in a
display (named “map”) with their aspect.

Answer:

17

experiment traffic type: gui {
output {

display map {
species building aspect: geom refresh: false;
species road aspect: geom;

}
}

}

End of step 1

18

We will define now the inhabitant species.

Step 2: defini)on of inhabitant
agents

Objectives:

- Definition of the inhabitant species

- Creation of inhabitant agents

- Display agents

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Defini)on of the inhabitant species

TODO: define an inhabitant species with the moving skill
and 3 a>ributes:
- target (type = point)
- proba_leave (type = float, init value= 0.05)
- speed (type = float, init value = 5 km/h)
- color (type = rgb, init value = random color)
Its aspect will be a circle (radius = 5m) with the color
color.
Answer:

20

species inhabitant skills: [moving]{
point target;
rgb color <- rnd_color(255);
float proba_leave <- 0.05;
float speed <- 5 #km/#h;

aspect circle {
draw circle(5) color: color;

}
}

A skillI is a plugin (written in
Java) giving new variables

and actions to agents.
With the moving skill, agents

get new attributes (speed,
heading, destination) and

actions (follow, goto, move,
wander) supplémentaires

the operator
rnd_color(255) returns
a random color

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Crea)on of inhabitant agents

TODO: create 1000 inhabitant agents and
locate them in a building.

Answer:

21

global {
//variables
init {

//creation of buildings and roads

create inhabitant number: 1000{
 location <- any_location_in(one_of(building));
 }

}
...

}
the operator
any_location_in(a_geometry)
returns a random location
inside a geometry

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Display of inhabitant agents

TODO: add inhabitants to the map display
with their circle display.

Answer:

22

experiment traffic type: gui {
output {

display map type: opengl{
species building aspect: geom refresh: false;
species road aspect: geom refresh: false;
species inhabitant aspect: circle;

}
}

}

End of step 2

23

Now we will define inhabitant agents’
behaviour.

Step 3: defini)on of inhabitant
agents’ behaviour

Objectives:

- Creation of the road network

- Creation of inhabitant agents’ behaviours:
- leave buildings
- move on the graph

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Defini)on of the road network

TODO: define a new global variable road_network and
ini;alise it in the global init block (with a graph created from
the road agents).
Answer:

25

global {
// other variables
graph road_network;

init {
create building from: shapefile_batiments;
create road from: shapefile_routes;
create inhabitant number: 1000{

location <- any_location_in(one_of(building));
 }
 road_network <- as_edge_graph(road);

}
}

The operator as_edge_graph(list of
polylines) builds a graph from a list of

polylines.

Inhabitant agents’ behaviour

Inhabitants move from one building to
another one on a road network.

They move if and only if they have a
target.

26

inhabitant

In a building, they will stay for some
time: at each simulation step, they

have a probability to leave
(proba_leave)

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

inhabitant species: leave reflex

TODO: define a new reflex (named leave) for inhabitant
species:
- it is ac;vated whether the agent does not have a target

and given a probability proba_leave
- the agent chooses as new target a random loca;on in a

random building

Answer:

27

species inhabitant skills: [moving]{
//definition of variables

reflex leave when: (target = nil) and (flip(proba_leave)) {
target <- any_location_in(one_of(building));

}

//aspect
}

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

inhabitant species: move reflex

TODO: define a new reflex (named move) for the
inhabitant species:
- ac;vated when the agent has a target
- the agent moves on the network toward its target
- when it reaches its target, it drops its target.

Answer:

28

species inhabitant skills: [moving]{
//definition of variables and reflex

reflex move when: target != nil {
do goto target: target on: road_network;
if (location = target) {

target <- nil;
}

}
//aspect

}

The goto action can only be used by
inhabitant agents because they have

the moving skill.

The goto action takes into account the
speed built-in inhabitant variable and

the step global variable.

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Modifica)on of the simula)on step
dura)on
Remark: agents move very slowly (more precisely, in 1
simula;on step, they move on a short distance)

TODO: set the dura;on of 1 simula;on step to 10
seconds.

Answer:

29

global {
//definition of global variables
float step <- 1#mn;
...

}

The symbol # can
also be used for
units (e.g. #min,
#m, #h …)

step is a global built-in variable that
represents the duration of 1

simulation step (default value = 1 s)

Similarly cycle is a global built-in
variable that contains the number
steps for the simulation beginning.

End of step 3

30

Now let take congestion into account!

Step 4: introduc)on of
conges)on

Objectives:

- Make the roads “aware” of the state
in terms of congestion

- Addition of a new reflex to update
speed on roads

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

road species: new dynamic variables

TODO: define 3 new dynamic variables for road agents
- capacity (type = float, init value = 1 + road

perimeter/30.0)
- nb_drivers (type = int, update = number of

inhabitants at a distance of 1 #m)
- speed_rate (type = float, update = exp(-nb_drivers/

capacity)
Modify the geom aspect in order to add a buffer of size
3* speed_rate around the geometry and change its
color in red.

Answer:

32

species road {
float capacity <- 1 + shape.perimeter/30;
int nb_drivers <- 0 update: length(inhabitant at_distance 1);
float speed_rate <- 1.0 update: exp(-nb_drivers/capacity);
aspect geom {

draw (shape + 3 * speed_rate) color: #red;
}

}

exp(-x)

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

global block: defini)on of
the update_speed reflex
TODO: define a new global reflex (update_speed) that
associates to each road a weight (func;on of the
speed_rate) in a map data structure. It then updates the
weight of the graph edge with this map.

Answer:

33

global {
//variables and init
reflex update_speed {

map<road,float> new_weights <- road as_map (each::each.shape.perimeter * each.speed_rate);
road_network <- road_network with_weights new_weights;

}
}

End of step 4

34

Now, let’s have a nice visualisation.

Step 5: defini)on of a 3D display

Objectives:

- Definition of 3D aspects for building and inhabitant agents

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

inhabitant species: aspect threeD

TODO: define a new threeD aspect that:
- draw a pyramid with a height of 5m and a

color color
- draw a sphere (with a radius of 2m) at a

height of 5m and with a color color.

Answer:

36

species inhabitant skills: [moving]{
//definition of the variables, reflex and aspect

aspect threeD{
draw pyramid(5) color: color;
draw sphere(2) at: location + {0,0,5} color: color;

}
}

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

building species: improve the display

TODO:
- add a height variable (type = int) to the

building species, with a value read from
the shapefile.

- add a new aspect (threeD) drawing the
shape of the building with a height
(height) and a texture.

Answer:

37

species building {
int height;
aspect threeD {

draw shape color: #gray depth: height texture: ["../includes/roof_top.png","../
includes/texture5.jpg"];

}
}

global {
init {

create building from: shapefile_buildings with:[height::int(read("height"))];

read attribute value and store it
into an attribute.

model my_model

global {
}

species my_species {
}

experiment my_model type: gui {
}

Display of the agents

TODO: Add in the map display a background
picture and modify the aspect of building
and inhabitants (using threeD).
Use the opengl mode for the display.

Answer:

38

experiment traffic type: gui {
output {

display map type: opengl{
image "../includes/soil.jpg" refresh: false;
species building aspect: threeD refresh: false;
species road aspect: geom ;
species inhabitant aspect: threeD;

}
}

}

The use of type: opengl is mandatory
to display 3D in a display. 

It can also be used for 2D simulation
(and often makes the zoom in/out

smoother)

End of step 5

!Créa;on d’agents : u;lisa;on de

l’instruc;on create nom_espece +

• number : nombre d’agents à créer (int, par défaut,

1)

• from : fichier SIG à u;liser pour créer les agents

(string ou file)

• with : permet de donner des valeurs ini;ales aux

variables des agents

• returns: liste des agents créés (list)

39

