
A Practical introduction to GAMA
Through a Segregation model

1

Benoit GAUDOU, IRD UMMISCO, University Toulouse 1 Capitole, USTH; benoit.gaudou@gmail.com

Introduction to the use
of the Gama Platform

It is now time to run GAMA !

First GAMA asks you to choose a
workspace.

A workspace is a folder that will
contain all your own projects and
models.

You are free to choose the folder you
want!

3

GAMA model files are stored in projects

Each project may contain several
models, as well as additional
resources (GIS data, pictures,…).

Projects can be organised in any way,
although a default layout is
proposed:

- includes : for all the ressource files
- models : contains all the model files

4

GAMA model files are stored in projects

Each project may contain several
models, as well as additional
resources (GIS data, pictures,…).

Projects can be organised in any way,
although a default layout is
proposed:

- includes : for all the ressource files
- models : contains all the model files

5

Problems view

Project Explorer

Editor view

Interactive
console

Take a look at “Game of life” model in library

Open the model Life.gaml
Models library \ Toy models \ Life \ Life.gaml

6

The model has
errors

The model can be
experimented

Launch experiment Game of life

An experiment is a way to “run” a model.
It can be reached either by:
- Clicking on an Experiment button

- in the Project Explorer, under the name of the model

7

5

Launching an experiment will switch from Modelling to Simula.on Perspective

Change the perspective

8

Simulation perspectiveModelling perspective

6

Exploring the Simulation perspective

Start/pause simulation (it will  
run until pause is clicked again)

Step the simulation (it will run one
cycle of the simulation)

Adjust the speed of the simulation

Relaunch the simulation
(necessary after having changed
the parameter values)

Interrupt the simulation

9

Explore the simulation with parameters modified from
Parameters view

The modifications made to the
parameters are either:

- Used for the current simulation when it
makes sense (for instance, if the
user changes a color)

- Used when the user reloads the
experiment otherwise (for instance,
if the user changes the size of the
grid)

Launching experiment again (from
the model editor) will erase the
modifications.

10

GAMA offers 2 views that display information about one or
several agents

11

 agent inspector

 agent browser

Inspect by right clicking on a agent in a display

Provides information about one specific agent.
It also allows to change the values of its variables

during the simulation.

It is possible to «highlight» the selected agent.

12

10

Inspect informations by agent browser

The species browser provides informations about all or a
selection of agents of a species.

The agent browser is available through the Agents menu
or by right clicking on a by right_clicking on a display

13

Take 5-10 minutes to explore some of the models of the
Models Library.

14

Toy Models\ Life \ Life.gaml
Experiment Game of Life

Toy Models\ Segregation (Schelling) \ Segregation
(GIS).gaml

Experiment schelling

Toy Models\ Ants (Foraging and Sorintg) \ Ant
Foraging.gaml

Experiment Classic

Toy Models \ Boids \ Boids 3D Motion.gaml
Experiment 3D

Write a first model: the
Schelling’s segregation

model

Urban Segregation Model proposed by Schelling

In 1969, Schelling introduced a model of
segregation in which individuals of two different
colours, positioned on a grid abstract
representation of a district), choose where to
live based on a preferred percentage of
neighbours of the same colour.

Using coins on a board, he showed that a small
preference for one's neighbours to be of the
same colour could lead to total segregation.

It is a good example of a generative model,
where the emergence of a phenomenon here,
segregation) is not directly predictable from the
knowledge of individual

16

Proposed implementation of the Model

People agents of 2 different colors
(red and yellow) live in a continuous
environment

At each simulation step, each
people agent:

computes if it is happy: it is
happy if the rate of people
agents at a distance
neighbours_distance of the same
color is higher or equals to the
threshold similar_rate_wanted

if it is not happy, it moves to a
random location

17

neighbours_distance

Similar_rate = 1/3 = 0.333
happy if similar_rate >= similar_rate_wanted

Step 1: definition and display of the people species

Objectives:

➡ Definition of the people species

➡ Creation of 2000 people agents
randomly located in the
environment

➡ Display of the agents

18

Import existing projects into the workspace

19

Imported projects are now  
in the User models

Creation of a new project

20

1
1’

2 3 4

Creation of a new model file

21

model mymodel

global {
/** Insert the global definitions, variables and actions here */

}

experiment mymodel type: gui {
/** Insert here the definition of the input and output of the model */
output {
}

}

1

3

2

Introduction to the main concepts of the
GAMA Modelling Language - GAML

The role of GAML is to support modellers in writing
models, which are specifications of simulations that
can be executed and controlled during experiments,
themselves specified by experiment plans.

Agents in GAML are specified by their species, which
provide them with a set of attributes (what they are,
know…), actions (what they can do), behaviours
(what they actually do) and also specifies properties
of their population, for instance its topology

Everything is an agent in GAML: the model itself
(called the world), the agents defined in it, the
experiments…

22

Therefore, the structure of a model in GAML is simply a set of
species declara.on statements

3 types of block declaration
(equivalent to species statements)
are supported:

- Global (unique): global attributes,
actions, dynamics and initialisation.

- Species and Grid: agent species.
Several species statements can be
defined in the same model.

- Experiment : simulation execution
context, in particular inputs and
outputs. Several experiment
statements can be defined.

23

model my_model

global {
/** Insert the global definitions,
 * variables and actions here
 */

}

species my_species{
/** Insert here the definition of the
 * species of agents
 */

}

experiment my_model type: gui {
/** Insert here the definition of the
 * input and output of the model
 */

}

General Structure of a model Model

2 ways to write commentaries (texts that are not just
part of the model but here for information purpose):

• //… : for one line. Example : //this is a
commentary

• /* … */ : can be used for several lines. Example : /*
this is as well a commentary */

Segregation model 1: People Species

To do: We want to create and
display 2000 people agents.

Steps to follow:
- Definition of the people species

- Creation of 2000 people agents
randomly located in the
environment

- Display of the agents

24

Segregation model 1:
Step 1. People Species definition

To do: define the species people:

Solution:

25

model my_model

global { }

species people{

}

experiment my_model type: gui { }

People species definition Model

Segregation model 1:
Step 2. Creation of 2000 people agents

To do: create 2000 people agents

Hint: this done at the initialization of the simulation, so in the init
block of the global

Solution:

26

model my_model

global {
init {

create people number: 2000;
}

}

species people{ }

experiment my_model type: gui { }

Creation of 2000 people agents Global

The GAML corner:
THE first cause of error in writing models is at the end of the line!

The rule:
- A line (i.e. a statement) always ends with either « ; » or a block of statements

- A block of statements is marked out by « { … } ».
- A block allows to execute a set of instructions in the context of another statement (create

agents during the initialization).

27

model my_model

global {
init {

create people number: 2000;
}

}

species people{ }

experiment my_model type: gui { }

Creation of 2000 people agents Global

Segregation model 1:
Step 3. Display of the people agents

To do: display the 2000 people agents

Hint: the definition of the displays is made in an experiment

Solution:

28

model my_model

global {
init {

create people number: 2000;
}

}

species people{ }

experiment Schelling1 type: gui {
output {

display people_display {
species people;

}
}

}

Display the people agents Experiment

The GAML corner: experiment block: output definition

The output block has to be defined in an experiment
block

It allows to define displays:

- Each display can contain different displays:
- Agent species (all the agents of the species) :

species my_species aspect: my_aspect
- list of agents :

agents layer_name value: agents aspect: my_aspect;
- Grids: optimised display of grids:

grid grid_name lines: my_color;
- Images:

image layer_name file: image_file;
- Charts: see later

- A refreshing rate can be defined: facet refresh: nb (int)

29

layer1
layer2

layer3

Segregation model 1:
Step 3. Display of the people agents

To do: display the 2000 people agents

Result: people are only displayed as points, with the same color for
all the agents.

30

Segregation model 1:
Step 4. Define the way agents are displayed through an aspect

To do: define an aspect for the people agents

Solution: define an aspect in the people species and use it in the
display.

31

species people {
aspect asp_circle {

draw circle(1.0) color: #red border: #black;
}

}

Define an aspect for people agents People

experiment Schelling1 type: gui {
output {

display people_display {
species people aspect: asp_circle;

}
}

}

Display the people agents Experiment

Segregation model 1:
Step 4. Define the way agents are displayed through an aspect

To do: define an aspect for the people agents

Results:

32

The GAML corner: A statement represents either an
imperative command or a declaration

Each line in a GAML model is a statement.

It consists in a keyword, followed by a list of facets (some of them
mandatory), ended by “;” or a block of statements.

A facet is a keyword, followed by “:”, and an expression.
- Note that the keyword of the first facet can usually be omitted.

- If the statement is a declaration, the first facet contains an identifier.

A block is a set of statements enclosed into curly brackets (“{” and “}”)

33

global {
init {

create people number: 2000;
}

}

species people{ }

Example of statements Model

The GAML corner: A statement represents either an
imperative command or a declaration

Each line in a GAML model is a statement.

It consists in a keyword, followed by a list of facets (some of them
mandatory), ended by “;” or a block of statements.

A facet is a keyword, followed by “:”, and an expression.
- Note that the keyword of the first facet can usually be omitted.

- If the statement is a declaration, the first facet contains an identifier.

A block is a set of statements enclosed into curly brackets (“{” and “}”)

34

global {
init {

create people number: 2000;
}

}

species people{ }

Example of statements Model

keyword

Facet with
a keyword (number)

and
an expression (2000)First Facet without

a keyword

The GAML corner: A statement represents either an
imperative command or a declaration

Each line in a GAML model is a statement.

It consists in a keyword, followed by a list of facets (some of them
mandatory), ended by “;” or a block of statements.

A facet is a keyword, followed by “:”, and an expression.
- Note that the keyword of the first facet can usually be omitted.

- If the statement is a declaration, the first facet contains an identifier.

A block is a set of statements enclosed into curly brackets (“{” and “}”)

35

global {
init {

create people number: 2000;
}

}

species people{ }

Example of statements Model

Examples of
statement
keywords keyword

The GAML Corner: example of statements

The GAML language
contains many
statements:

- draw

- create

- loop

- If - else

- declaration

- …

Example of the if - else:

36

if(condition) {
set of statements to perform if the condition is true

} else {
set of statements to perform otherwise

}

Segregation model 1:
Step 5. Define the color of each agent

To do: each agent is displayed with a color (red or yellow) that
characterize it

Hints: each people agent will be characterized by a color value, which
is initialized to a random color (among red and yellow).

Solution:
- Add a color attribute

to the people species

- Initialize it to a random
color value among
red and yellow.

- Use the color in the display

37

species people {

rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

Add the color attribute and initialize it People

Segregation model 1:
5. Define the color of each agent

To do: each agent is displayed with a color (red or yellow) that
characterize it

Hints: each people agent will be characterized by a color value, which
is initialized to a random color (among red and yellow).

Solution:
- Add a color attribute

to the people species
- Initialize it to a random

color value among
red and yellow.

- Use the color in the display

38

species people {

rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

Add the color attribute and initialize it People

color attribute
for the people species

of type rgb

Segregation model 1:
5. Define the color of each agent

To do: each agent is displayed with a color (red or yellow) that
characterize it

Hints: each people agent will be characterized by a color value, which
is initialized to a random color (among red and yellow).

Solution:
- Add a color attribute

to the people species

- Initialize it to a random
color value among
red and yellow.

- Use the color in the display

39

species people {

rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

Add the color attribute and initialize it People

Init block can be used
to initialize the agent

when it is created

Initialize randomly
color to red or yellow
With equal probability

Segregation model 1:
5. Define the color of each agent

To do: each agent is displayed with a color (red or yellow) that
characterize it

Hints: each people agent will be characterized by a color value, which
is initialized to a random color (among red and yellow).

Solution:
- Add a color attribute

to the people species

- Initialize it to a random
color value among
red and yellow.

- Use the color in the display

40

species people {

rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

Add the color attribute and initialize it People

color attribute
Is used in the aspect

All GAMA agents are provided with some
built-in attributes :

• name (string)

• shape (geometry)

• location (point) : centroid of its shape

The GAML Corner: definition of a species

4 kinds of elements can be defined
in a species:

- The internal state of the agents of this
species (attributes).

- Their capabilities (action): blocks that
will be executed only when called.

- Their behavior (reflex): blocks that will
be executed at each step.

- Their way of being displayed (aspect).

In addition, an unique init block can
be used to initialized agents at
their creation.

Note: global, grid, experiment are
kinds of species and have the
same structure. 41

species my_species {
string a_variable;

init { }
action my_action { }
reflex my_behavior { }
aspect my_aspect { }

}

General structure of a species Species

The GAML corner: Init block

For each species, an init block can
be defined

It allows to execute a sequence of
statements at the creation of the
agents

Activated only once when the agent
is created, after the initialisation of
its variables, and before it executes
any reflex

Only one instance of init per species

42

global {
............
//Only executed when world agent is

created
init {
 write "Executing initialisation";

}
}

GAML: declara-on of an a1ribute

General declaration of a variable:

The data_type describes the kind of data stored in the variable. It can be:
- int (integer), float, string, bool (boolean value, i.e. that can be only true or false),

point, list, pair, map, file, matrix, species name, rgb (for the colors), graph,
path…

Additional facets:
- <- : (initial value),

- update: (value computed at each simulation step),

- ->: (value computed each time it is called),

- min: (minimum value, if the value should become lower than the min, it is set to
the min value).

- max

43

data_type a_variable;

species people {
rgb color <- #red;
int age <- 1 min:1 max: 120 update: age + 1;

}

The GAML corner: built-in constants

GAML provides a set of built-in
constants, starting with #

- colors: #red, #yellow, #darkgrey…

- units: #s, #h, #mn, # day, #m, #km…

- mathematical: #pi, #e, #infinity…

- Graphical units: #zoom,
#camera_location

44

The GAML corner: operators

Whereas statements are commands or
declaration, operators are functions
that compute a value on one or
several operands.

Unary operators are written:
- operator(operand1)

Binary operators are written:
- Op1 operator Op2

- operator(Op1, Op2)

When there are more
than 2 operands:

- Op1 operator(Op2, …)

- operator(Op1, Op2, …)

45

species people {

rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

Add the color attribute and initialize it People

Operator flip, that computes
randomly the value

true or false
with a given probability

Operator circle computes
a circle geometry

with a given radius

Back to the model

Notes:
the three following ways
of initializing color are
equivalent in this case.

46

species people {
rgb color;

init {
if(flip(0.5)) {

color <- #red;
} else {

color <- #yellow;
}

}
}

Add the color attribute and initialize it People

species people {
rgb color;

init {
color <- (flip(0.5) ? #red : #yellow);

}
}

Add the color attribute and initialize it People

species people {
rgb color <- (flip(0.5) ? #red : #yellow);

}

Add the color attribute and initialize it People

The operator ? : 
Condition ? valueIfTrue : valueIfFalse

Summary of the model 1

47

model Schelling1

global {
init {

create people number: 2000;
}

}

species people {

rgb color <- (flip(0.5) ? #red : #yellow);

aspect asp_circle {
draw circle(1.0) color: color border: #black;

}
}

experiment Schelling1 type: gui {
output {

display people_display {
species people aspect: asp_circle;

}
}

}

Summary of model 1 Model

Try to run the simulation!

Step 1.5 (dummy model): introduce agent move

Objectives:

➡ Definition a random move of
people agents at each simulation
step

48

Segregation model 1.5: move
Step 1. Define a random move for agents

To do: define a random move behavior for the people agents

Hints: for an agent to move is simply to change its location.

Solution:

49

species people {
rgb color <- (flip(0.5) ? #red : #yellow);

reflex move {
location <- any_location_in(world.shape);

}

}

Define a move behavior People

Segregation model 1.5: move
Step 1. Define a random move for agents

To do: define a random move behavior for the people agents

Hints: for an agent to move is simply to change its location.

Solution:

50

species people {
rgb color <- (flip(0.5) ? #red : #yellow);

reflex move {
location <- any_location_in(world.shape);

}

}

Define a move behavior People
Reflex is used

to define a behavior

Compute a random
location in a geometry

world is the global agent.
Its shape is the spatial
environment in which
agents are located.

Segregation model 1.5: move
Step 1. Define a random move for agents

To do: define a random move behavior for the people agents

Hints: for an agent to move is simply to change its location.

Solution:

51

species people {
rgb color <- (flip(0.5) ? #red : #yellow);

reflex move {
location <- any_location_in(world.shape);

}

}

Define a move behavior People
Reflex is used

to define a behavior

Compute a random
location in a geometry

world is the global agent.
Its shape is the spatial
environment in which
agents are located.

Note 1: all GAMA agents are provided with a location attribute that
defined the coordinate of the centroid of its shape. When the location
is modified, the shape of the agent is translated to the new location
and when the shape is modified, the location is re-computed.

The GAML Corner:
Species are provided with a simple behavioural structure, based on
reflexes (what they actually do)

A reflex is a sequence of statements that can be executed, at each time
step, by the agent.

reflex name when: condition{
[statements]

}

If no facet when are defined, it will be executed every time step.

If there is one, it is executed only if the boolean expression evaluates to
true.

Several reflex blocks can be defined in each species. Each will be
executed at each simulation step.

52

Note: The init block is a specific
reflex that is activated only once at
the creation of the agent

Segregation model 1.5: move
Step 1. Define a random move for agents

To do: define a random move behavior for the people agents

Hints: for an agent to move is simply to change its location.

Solution:

53

species people {
rgb color <- (flip(0.5) ? #red : #yellow);

reflex move {
location <- any_location_in(world.shape);

}

}

Define a move behavior People
Reflex is used

to define a behavior

Compute a random
location in a geometry

world is the global agent.
Its shape is the spatial
environment in which
agents are located.

Run the simulation!

Step 2: definition of the people agent dynamics

Objectives:

➡ Definition of global variables (nb_people,
similarity_rate, neighbour_distance…)

➡ Definition of the neighbours attribute for the
people agents

➡ Definition of a computing neighbours
similarity behaviour for the people agents

➡ Definition of a moving behaviour for the
people agents

54

Segregation model 2:
Step 1. Global attribute definitions

In the following we need to compute:
- the neighbourhood of each people agents, that is the agents at a given

distance

- The satisfaction in its neighborhood: that is the rate of agents of a different color
compared to a rate of similarity wanted.

These 2 values (neighbours_distance and rate_similarity_wanted) will
have the same value for all the agents, we define thus them as global
attributes.

55

global {
float rate_similar_wanted <- 0.4;
float neighbours_distance <- 5.0;

init {
create people number: 2000;

}
}

Define global attributes Global

Segregation model 2:
Step 2. Neighbours definition for people species

To do: define an attribute for the people
species called neighbours (containing the
agents in the neighborhood) and compute
its value.

- Type: list of people agents;

- Value: update at each simulation step with the
people agents that are at a distance lower or
equal to neighbours_distance

Solution:

56

neighbours_distance

Segregation model 2:
Step 2. Neighbours definition for people species

To do: define an attribute for the people
species called neighbours (containing the
agents in the neighborhood) and compute
its value.

- Type: list of people agents;

- Value: update at each simulation step with the
people agents that are at a distance lower or
equal to neighbours_distance

Solution:

57

species people {

rgb color;

list<people> neighbours update: people at_distance neighbours_distance;
// Behavior and aspects

}

Define and compute neighborhood People

neighbours_distance

Segregation model 2:
Step 2. Neighbours definition for people species

To do: define an attribute for the people
species called neighbours (containing the
agents in the neighborhood) and compute
its value.

- Type: list of people agents;

- Value: update at each simulation step with the
people agents that are at a distance lower or
equal to neighbours_distance

Solution:

58

species people {

rgb color <- (flip(0.5) ? #red : #yellow);

list<people> neighbours update: people at_distance neighbours_distance;
// Behavior and aspects

}

Define and compute neighborhood People

neighbours_distance

Species at_distance float_value
computes the list of agents

of the given species at the given distance

The GAML corner: The scheduler of GAMA

The basic scheduler of GAMA works as
follows:

➡ GAMA activates the world agent (global)
then all the other agents according to
their order of creation

➡ When an agent is executed, first its update
its attributes (facet update of the
attributes), then it activates its reflexes
in their definition order

Of course the Scheduler can be easily
tuned through the GAML language:

➡ modification of the order of activation of the
agents (than can be dynamic)

➡ Fine activation of the agents using actions
(e.g.: agent1 executes a first action,
then agent2 executes an action, then
agent1 executes again another
action….)

59

agent1

agent2

World

1) If I have attributes with a update
facet, I compute their new value in
their definition order

2) If I have reflexes, I activate them
in their definition order

3) If I have attributes with a
update facet, I compute their new
value in their definition order
4) If I have reflexes, I activate
them in their definition order

5) If I have attributes
with a update facet, I
compute their new
value in their
definition order

6) If I have reflexes, I
activate them in their
definition order

Note: GAMA offers some specific
control architectures (finite state
machine, tack-oriented
architectures…) that can be added to
species

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the
people species

To do: define a reflex called computing_similarity for the people species:
- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours
with the same colour as the agent, then set the rate_similar to the number of
similar neighbours divided by the number of neighbours

- Compute the happiness state of the agent (and store it in an attribute)

60

neighbours_distance

Similar_rate = 1/3 = 0.333
happy if similar_rate >= similar_rate_wanted

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as the agent,
then set the rate_similar to the number of similar neighbours divided by the number of neighbours

- Compute the happiness state of the agent (and store it in an attribute)

61

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:
- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as the
agent, then set the rate_similar to the number of similar neighbours divided by the number of
neighbours

- Compute the happiness state of the agent (and store it in an attribute)

62

New reflex

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0
- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as the

agent, then set the rate_similar to the number of similar neighbours divided by the number of
neighbours

- Compute the happiness state of the agent (and store it in an attribute)

63

Definition of a local variable
(same syntax as attribute),
to store the similarity rate

Note: local variables are variables that exist
only inside a block. These variables are
delete from the computer memory at the end
of the block

type my_local_variable <- init_value;

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0
- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as the

agent, then set the rate_similar to the number of similar neighbours divided by the number of
neighbours

- Compute the happiness state of the agent (and store it in an attribute)

64

The empty operator returns true
is the list operand is empty

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as
the agent, then set the rate_similar to the number of similar neighbours divided by the number of
neighbours

- Compute the happiness state of the agent (and store it in an attribute)

65

The length operator computes
the number of elements in a list

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as
the agent, then set the rate_similar to the number of similar neighbours divided by the number of
neighbours

- Compute the happiness state of the agent (and store it in an attribute)

66

The count operator computes the number
of elements in the first operand (list, species)

that fulfill the second operand condition

Note: for list operators,
the keyword each
represents each
element of the list

species people {
// other attributes
list<people> neighbours update: people at_distance neighbours_distance;
bool is_happy <- false;

reflex computing_similarity {
float rate_similar <- 0.0;
if (empty(neighbours)) {

rate_similar <- 1.0;
} else {

int nb_neighbours <- length(neighbours);
int nb_neighbours_sim <- neighbours count (each.color = color);
rate_similar <- nb_neighbours_sim /nb_neighbours ;

}
is_happy <- rate_similar >= rate_similar_wanted;

}
//other reflex and aspect definition

}

Compute of similarity People

To do:
- define a reflex called computing_similarity for the people:

- if the neighbours is empty, set the rate_similar to 1.0

- Otherwise, compute the number of neighbours, then the number of neighbours with the same colour as the
agent, then set the rate_similar to the number of similar neighbours divided by the number of neighbours

- Compute the happiness state of the agent (and store it in an attribute)

Segregation model 2:
Step 3. Compute similarity rate and happiness level for the people
species

67

Segregation model 2:
Step 4. People moves when they are not happy

To do:
- activate the move reflex only if the agent is not happy (not is_happy)

Solution:

68

species people {

reflex move when: not is_happy {
location <- any_location_in(world.shape);

}

}

Modify the move behavior People

End of step 2

69

Run the model!

Try to change the number of people agents

Now it’s time to define some new parameters and new
outputs for the model !

Step 3: definition of new parameters and outputs

Objectives:

➡ Compute the total number of happy people and store it in a global variable

➡ Definition of an ending condition (when all people are happy)

➡ Definition of parameters

➡ Definition of a new monitor to follow the number of happy people

➡ Definition of a chart to follow the evolution of the number of happy people

70

Segregation model 3:
Step 1. Computation of the number of happy people

To do:
- define a global attribute called nb_happy_people:

- Type: int;

- Value: updated at each simulation step with the number of people agents that are
happy

Solution :

71

We are now able to know at every step the
number of happy people

Next step: pause the simulation when all
the people agents are happy! For that we need to use the

pause action of the world agent!

global {
// other attributes
int nb_happy_people <- 0 update: people count each.is_happy ;
//...

}

Compute the number of happy people Global

Segregation model 3:
Step 2. Stop the simulation

To do:
- define a global reflex called end_simulation:

- It is activated only when everybody is happy (i.e. the number of happy
people is equal to the number of people)

- call the « pause » action of the world agents that pauses the simulation

Solution:

72

global {
//attributes and init

reflex end_simulation when: nb_happy_people = length(people) {
do pause;

}
}

Stop the simulation when everybody is happy Global

do is used to call an action
(here the built-in pause action)

The GAML corner: an action in GAML is a capability available
to the agents of a species (what they can do)

It is a block of statements that can be used
and reused whenever needed. An action
can accept arguments.

An action can return a result (statement
return).

return_type action_name (var_type arg_name,...)
 {  
 [statements]  
 [return value;]  
}

Some actions are directly available (built-in
action, i.e. primitive) for all agents (e.g.
die action) or to specific agents (pause
action of the world agents)

73

action simple_action {
 write "simple action";
}

int sum (int a <- 100, int b) {
 return a + b;
}

Action that returns a value

write statement displays
a message in the console

The GAML corner: an action in GAML is a capability available
to the agents of a species (what they can do)

It is a block of statements that can be used
and reused whenever needed. An action
can accept arguments.

An action can return a result (statement
return).

return_type action_name (var_type arg_name,...)
 {  
 [statements]  
 [return value;]  
}

Some actions are directly available (built-in
action, i.e. primitive) for all agents (e.g.
die action) or to specific agents (pause
action of the world agents)

74

action simple_action {
 write "simple action";
}

int sum (int a <- 100, int b) {
 return a + b;
}

Action that returns a value

write statement displays
a message in the console

Type of the
returned value

Return a value,
and finish the action

Definition 2 arguments :
the first one named «a», type integer

and default value is «100»;
the second named «b», type integer

The GAML Corner: Different ways to call an action in GAML

Call a action that does not return any value: 
 
do action_name(v1,v2);

Call an action that returns a value:

my_var <- self action_name(arg1:v1, arg2:v2);

Examples:

do action_simple;

int d <- self add(10,100);

int d <- self add(b:100);

75

Segregation model 3:
Step 3. Parameter definition

To do: define 3 parameters:
- attribute: nb_people, legend: « nb of people »

- attribute: rate_similar_wanted, legend: « rate similar wanted », min: 0.0, max: 1.0

- attribute: neighbours_distance, legend: « neighbours distance », step: 1.0

76

The GAML corner: parameter definition

Parameter (defined in the experiment block):
parameter legend var: var_name category: my_cat;

- Allow to give the user the possibility to define the value of a global attribute
- legend: string to display
- var_name: reference to a global attribute
- category: string (use to better organise the parameters) - optional

77

Example:

Segregation model 3:
Step 3. Parameter definition

To do: define 3 parameters:
- attribute: nb_people, legend: « nb of people »

- attribute: rate_similar_wanted, legend: « rate similar wanted », min: 0.0, max: 1.0

- attribute: neighbours_distance, legend: « neighbours distance », step: 1.0

Hints: nb_people has first to be defined first as a global variable,
before becoming a parameter.

78

global {
int nb_people <- 2000;
float rate_similar_wanted <- 0.4;
float neighbours_distance <- 5.0;

int nb_happy_people <- 0 update: people count each.is_happy ;

init {
create people number: nb_people;

}

reflex end_simulation when: nb_happy_people = nb_people {
do pause;

}
}

Define a global variable for the number of people Global

Segregation model 3:
Step 3. Parameter definition

To do: define 3 parameters:
- attribute: nb_people, legend: « nb of people »

- attribute: rate_similar_wanted, legend: « rate similar wanted », min: 0.0, max: 1.0

- attribute: neighbours_distance, legend: « neighbours distance », step: 1.0

Hints: nb_people has first to be defined first as a global variable, before
becoming a parameter.

79

experiment Schelling1 type: gui {
parameter "nb of people" var: nb_people;
parameter "rate similar wanted" var: rate_similar_wanted min: 0.0 max: 1.0;
parameter "neighbours distance" var: neighbours_distance step: 1.0;

output {
display people_display {

species people aspect: asp_circle;
}

}
}

Define parameters Experiment

Segregation model 3:
Step 3. Parameter definition

To do: define 3 parameters:
- attribute: nb_people, legend: « nb of people »

- attribute: rate_similar_wanted, legend: « rate similar wanted », min: 0.0, max: 1.0

- attribute: neighbours_distance, legend: « neighbours distance », step: 1.0

Hints: nb_people has first to be defined first as a global variable, before
becoming a parameter.

80

experiment Schelling1 type: gui {
parameter "nb of people" var: nb_people;
parameter "rate similar wanted" var: rate_similar_wanted min: 0.0 max: 1.0;
parameter "neighbours distance" var: neighbours_distance step: 1.0;

output {
display people_display {

species people aspect: asp_circle;
}

}
}

Define parameters Global

The user can now modify the value of the global attributes
through parameters

Try it !
(Do not forget to relaunch the simulation when needed)

Next step: definition of a monitor and a chart!

Segregation model 3:
Step 4. Monitor the number of happy people

To do: define a monitor to follow the evolution of the number of
happy people

81

The GAML corner: monitor definition

A monitor is an output allowing to display the current value of
an expression

The data to display have to be defined inside the output block:

monitor legend value: value

82

experiment main_experiment type:gui{
//...parameters
output {

monitor "Infected people rate" value: infected_rate;

//...display
}

}

Example

Segregation model 3:
Step 4. Monitor the number of happy people

To do: define a monitor to follow the evolution of the number of
happy people

Answer:

83

experiment Schelling1 type: gui {
parameter "nb of people" var: nb_people;
parameter "rate similar wanted" var: rate_similar_wanted min: 0.0 max: 1.0;
parameter "neighbours distance" var: neighbours_distance step: 1.0;

output {
display people_display {

species people aspect: asp_circle;
}

monitor "nb of happy people" value: nb_happy_people;
}

}

Define a monitor Experiment

Segregation model 3:
Step 5. Plotting the number of happy people

To do: define a chart in a new display called display_chart to follow
the evolution of the number of happy people.

- chart name: « evolution of the number of happy people », type: series

- data: "nb of happy people", value: nb_happy_people, color: green

84

The GAML Corner: chart definition (in experiment block)

GAMA allows to display several type of charts :
- Pie

- Series

- Histogram

- XY chart

A chart is a layer in a display:
chart legend type: chart_type

The data to display have to be defined inside the chart
block:

data legend value: value color: colour

85

Segregation model 3:
Step 5. Plotting the number of happy people

To do: define a chart in a new display called display_chart to follow
the evolution of the number of happy people.

- chart name: « evolution of the number of happy people », type: series

- data: "nb of happy people", value: nb_happy_people, color: green

Answer:

86

experiment main_xp type: gui {
// parameter definition

output {
// display monitor
// map display definition
display chart {

chart "evolution of the number of happy people" type: series{
data "nb of happy people" value: nb_happy_people color: #green;

}
}

}
}

Define a chart Experiment

End of step 3

Objectives:

- Definition of the people species

- Creation of 2000 people agents randomly
located in the environment

- Display of the agents

87

It’s time to play with model !
Questions: what is the impact on the

number of clusters of the
rate_similarity_wanter parameter?

Same question for the neighbours_distance
parameter

Other implementations of the model are possible!

88

Training session on agent-based modeling, introduction to the GAMA and PAMS platforms, IRD, UMI UMMISCO 209, MSI Team, 26, 27 & 28 oct. 2009, Hanoi, Vietnam

To follow....

• These different segregation models have
allowed us to explore the versatility of
ABMs and the ease with which models can
be incrementally built.

• They will be used:

� In the lectures on GIS & Agent-Based Modeling,
where we'll see that the same base
(schelling_common) will allow to define agents now
behaving in a GIS (and not a grid anymore).

� In the lectures on batch simulations and parameters
sweeping, where we'll see how to explore their
parameters space.

� In the lectures on PAMS and collaborative modelling,
as a basis for interaction between different users.

21

Training session on agent-based modeling, introduction to the GAMA and PAMS platforms, IRD, UMI UMMISCO 209, MSI Team, 26, 27 & 28 oct. 2009, Hanoi, Vietnam

Segregation: heterogeneous Groups

17

<segregation>
	 <include file="../include/schelling_common.xml" />
	 <global>
	 	 <list name="prefs" value="[pref_1, pref_2, pref_3, pref_4, pref_5, pref_6, pref_7, pref_8]" />
	 	 <float name="pref_1" init="0.5" parameter="Desired similarity for group 1:" category="Population" min="0" max="1" />

...
	 	 <float name="pref_8" init="0.5" parameter="Desired similarity for group 8:" category="Population" min="0" max="1" />

	 	 <action name="initialize_people">
	 	 	 <create species="people" number="number_of_people" />
	 	 	 <set name="all_people" value="list people" />
	 	 </action>
	 </global>

 <environment width="dimensions" height="dimensions">
 <grid name="space" width="dimensions" height="dimensions" neighbours="8" torus="true" >
 <bool name="multiagent" value="false" const="true" />
 <rgb name="color" value="black" const="true" />
 </grid>
 </environment>

	 <entities>
 <species name="people" parent="base" skills="situated, visible">
 <rgb name="color" init="colors at (rnd (number_of_groups - 1))" const="true" />
 <list name="my_neighbours" value="((space location) neighbours_at neighbours_distance) accumulate (each.agents)" of="people" />
	 	
	 	 	 <float name="my_desired_similarity" init="prefs at (colors index_of color)" const="true"/>
	 	 	 <bool name="is_happy" value="similar_nearby >= (my_desired_similarity * total_nearby)" />

	 </species>
	 </entities>

 <output>
 <display name="grille" type="grid" environment="space" />
 </output>
</segregation>

In this model, each agent computes its "desired
similarity" based on its color. It is easy to imagine
other functions, even dynamical ones.

Each group has now its own preferences

Training session on agent-based modeling, introduction to the GAMA and PAMS platforms, IRD, UMI UMMISCO 209, MSI Team, 26, 27 & 28 oct. 2009, Hanoi, Vietnam

Heterogeneous : simulation

• Experiment with different values for the groups.

• Try to modify the model by changing the way
agents compute their "desired similarity".

� Random between bounds expressed at the group level

� Itself depending on the density

� Changing over time (agents becoming more tolerant, less
tolerant...)

18

Training session on agent-based modeling, introduction to the GAMA and PAMS platforms, IRD, UMI UMMISCO 209, MSI Team, 26, 27 & 28 oct. 2009, Hanoi, Vietnam

Segregation: Cellular Automata

13

<segregation>
	 <include file="../include/schelling_common.xml" />

	 <global>
	 	 <list name="all_people" init="[]" of="space" value="all_places select (each.color != black)" />
	 	 <action name="initialize_people">
	 	 	 <loop from="0" to="number_of_people - 1" var="i">
	 	 	 	 <set name="(all_places at i).color" value="colors at (rnd (number_of_groups - 1)) " />
	 	 	 </loop>
	 	 </action>
	 </global>

	 <environment width="dimensions" height="dimensions">
	 	 <grid name="space" parent="base" width="dimensions" height="dimensions" neighbours="8" torus="true">
	 	 	 <rgb name="color" init="black" />
	 	 	 <bool name="multiagent" value="false" const="true" />
	 	 	 <list name="my_neighbours" value="(self neighbours_at neighbours_distance) select (each.color != black)"
	 	 	 	 of="space" />

	 	 	 <reflex name="migrate" when="(color !=black) and !is_happy">
	 	 	 	 <set name="(all_places first_with (each.color = black)).color" value="color" />
	 	 	 	 <set name="color" value="black" />
	 	 	 </reflex>
	 	 </grid>
	 </environment>
	 <output>
	 	 <display name="grille" type="grid" environment="space" />
	 </output>
</segregation>

In the CA, black places are considered empty
Initialize_people is defined (used by the inherited
<init> of schelling_common).

The grid, support of the CA, is defined like any
other species. In this model, space and people are
"the same".

Migrating, in a CA, simply consists in swapping
colors (between a colored cell and a black one)

Training session on agent-based modeling, introduction to the GAMA and PAMS platforms, IRD, UMI UMMISCO 209, MSI Team, 26, 27 & 28 oct. 2009, Hanoi, Vietnam

Cellular automata : simulation

• Experiment different sets of parameters :
tolerance, density, etc.

• Experiment with more than 2 groups.

� Are there unstable configurations ?

• Save the most interesting ones.

� By editing the saved parameters to include another of
the models, you will be able to make the same
experiments in the four ones.

14

Cellular automata Agents and grid Agents and GIS

